Высота пирамиды разделена на четыре равные части и через точки деления проведены плоскости, параллельные основанию. площадь основания равна 400 кв. ед. определить площадь полученных сечений.
поскольку площади сечений, параллельных основанию пирамиды, относятся как квадраты их расстояний от вершины пирамиды запишем отношения площадей основания и следующего сечения следующим образом:
поскольку площади сечений, параллельных основанию пирамиды, относятся как квадраты их расстояний от вершины пирамиды запишем отношения площадей основания и следующего сечения следующим образом:
Обозначим площади буквами А.
A1/400=h^2(3/4)^2:h^2
A1=400*9/16=225
для следующего сечения аналогично:
A2/400=h^2(1/2)^2:h^2
A2=400/4=100
И для самого верхнего:
А3/400=h^2(1/4)^2:h^2
А3=400/16=25
ответы 25,100 и 225