Высота правильной четырехугольной пирамиды равна 5 см а сторона основания 6 см Найдите длину бокового ребра высота правильной четырехугольной пирамиды равна 5 см а сторона основания 6 см
Найдите длину бокового ребра
A) из корня 61 см
Б )из корня 37 см.
C)5 см
Д) 8 из корняк 2 см
Е) из корня 43 см
ответ: 12 см
Объяснение: Полушар касается изнутри боковой поверхности конуса.
Нарисуем осевое сечение конуса – равнобедренный треугольник АВС с боковыми сторонами – образующей АВ, основанием – диаметром АС, высотой ВО, и вписанной полуокружностью с центром О и точкой касания с образующей Н.
Высота ВО делит этот треугольник на равные прямоугольные треугольники. По т.Пифагора радиус основания конуса АО= √(АВ²-ВО²)=√(25²-20²)=15. Тогда радиус полушара ОН- высота ⊿ ВОА. Высота прямоугольного треугольника, проведенная к гипотенузе, равна произведению катетов, делённому на гипотенузу. ОН=ВО•АО:АВ=20•15:25=12 см
V = 96 см².
Объяснение:
Основание правильной четырехугольной пирамиды - квадрат. Так как углом между наклонной (высота пирамиды) и плоскостью (боковая грань пирамиды) являетс угол между этой наклонной и ее проекцией на плоскость, высота боковой грани (апофема) образует с высотой пирамиды угол 30° (дано). В правильной пирамиде ее вершина проецируется в центр основания (пересечение диагоналей квадрата), расстояние от которого до боковых сторон равно половине стороны квадрата.
Рассмотрим прямоугольный треугольник SOH, образованный апофемой SH (гипотенуза), высотой пирамиды (SO) и половиной стороны основания ОН (катеты). <ОСН=30° (дано).
По Пифагору SO² = SH² - OH².
Так как катет, лежащий против угла 30° равен половине гипотенузы, то SH = 2*OH и тогда SО² = 3*ОН² = 36 см => ОН = 2√3 см.
Сторона основания равна 2*ОН = 4√3, площадь основания равна
So = (4√3)² = 48 см². Тогда
V = (1/3)*So*H = (1/3)*48*6 = 96 см²