Высота правильной призмы ABCDA1B1C1D1 равна 10 см. Сторона её основания 12 см. Вычислите: а)Площадь поверхности призмы; б) Площадь сечения призмы с плоскостью, содержащей прямую АВ и середину ребра СС1.
Пусть ad = a1d1 — равные биссектрисы, ∠a = ∠a1, ac = a1c1 — равные стороны. в δаdс = δa1d1c1: ∠dac = ∠d1a1c1 (т.к. ∠dac половина угла ∠bac ∠dac = ∠bac : 2 = ∠b1a1c1 : 2 = ∠d1a1c1). ad = a1d1, ас = а1с1. (по условию: ad = a1d1 — равные биссектрисы, aс = a1c1 — равные прилежащие стороны). таким образом, δadc = δа1d1c1 по 1-му признаку равенства треугольников, откуда ∠с = ∠с1 как лежащие против равных сторон в равных треугольниках) в δabcи δа1в1с1: ас = а1с1, ∠а = ∠а1 (по условию) ∠с = ∠с1. таким образом, δabc = δа1в1с1 по 1-му признаку равенства треугольников, что и требовалось доказать.
Заданный четырёхугольник АРТС - равнобедренная трапеция. В соответствии с заданием треугольники ВРТ и ВАС подобны с коэффициентом 1:4. Обозначим точку касания окружности с отрезком РТ как точка F, а отрезок ВР за х, боковая сторона трапеции равна 3х. Диаметр окружности и отрезок BF относятся как 1:3, поэтому BF = 18/3 = 6 см, а PF = √(х² - 36). Верхнее основание трапеции - отрезок РТ равен 2√(х² - 36), а нижнее - в 4 раза больше, то есть АС = 8√(х² - 36). По свойству вписанной окружности суммы оснований и боковых сторон равны. 3х + 3х = 2√(х² - 36) + 8√(х² - 36). 6х = 10√(х² - 36). Возведём обе части в квадрат. 64х² = 100х² - 3600. 64х² = 3600. х = √3600/√64 = 60/8= 15/2. Периметр АРТС равен (3х + 3х)*2 = 12х = 12*(15/2) = 6*15 = 90 см.
В соответствии с заданием треугольники ВРТ и ВАС подобны с коэффициентом 1:4.
Обозначим точку касания окружности с отрезком РТ как точка F, а отрезок ВР за х, боковая сторона трапеции равна 3х.
Диаметр окружности и отрезок BF относятся как 1:3, поэтому BF = 18/3 = 6 см, а PF = √(х² - 36).
Верхнее основание трапеции - отрезок РТ равен 2√(х² - 36), а нижнее - в 4 раза больше, то есть АС = 8√(х² - 36).
По свойству вписанной окружности суммы оснований и боковых сторон равны.
3х + 3х = 2√(х² - 36) + 8√(х² - 36).
6х = 10√(х² - 36). Возведём обе части в квадрат.
64х² = 100х² - 3600.
64х² = 3600.
х = √3600/√64 = 60/8= 15/2.
Периметр АРТС равен (3х + 3х)*2 = 12х = 12*(15/2) = 6*15 = 90 см.