Высота, снятая с крыши большого угла равнобедренной трапеции, делит ее большое основание на участки длиной 3,5 и 8,5 дм. Боковая стенка составляет 9,5 дм. Найдите площадь трапеции. Это на русском, я незнаю правильно перевёл или нет. Если решите
Очень полезная задача. Только зачем 3 раза делать одно и то же? 1) находим координаты середины отрезка АВ: ((-2+2)/2;(0+4)/2) или (0;2) 2) находим уравнение прямой, проходящей через эту середину и точку С Ищем неизвестные коэффициенты в уравнении у=ах+b. Для этого составим систему уравнений, учитывая, что две упомянутые точки принадлежат прямой 2=а*0+b 0=a*4+b Из первого уравнения b=2. Из второго а=-0,5 ответ у=-0,5*х+2 Все подробно. Попробуй остальные уравнения получить сам. Если не получится, в 21-00 выложу остальные решения
Ромб - это параллелограмм, у которого все стороны равны.
Ромб имеет 2 диагонали. Каждая из диагоналей ромба делит его на 2 симметричных треугольника, поэтому, диагонали являются осями симметрии ромба.
На рисунке изображен ромб ABCD, с диагоналями АС и ВD.
AC и BD - оси симметрии ромба ABCD, поэтому нельзя построить фигуру, симметричную ромбу ABCD, относительно прямой BD.
Прямая BD - одна из осей симметрии, и ромб симметричен сам себе, относительно своей оси симметрии.
Наличие оси симметрии, характеризует ромб, как симметричную фигуру. то есть, фигуру, состоящую из отраженно равных частей, относительно прямой на плоскости.
в нашем случае, прямая AD, делит ромб на 2 отраженно равных треугольника (симметричных треугольника) ABD и CDB.
1) находим координаты середины отрезка АВ: ((-2+2)/2;(0+4)/2) или (0;2)
2) находим уравнение прямой, проходящей через эту середину и точку С
Ищем неизвестные коэффициенты в уравнении у=ах+b. Для этого составим систему уравнений, учитывая, что две упомянутые точки принадлежат прямой
2=а*0+b
0=a*4+b
Из первого уравнения b=2. Из второго а=-0,5
ответ у=-0,5*х+2
Все подробно. Попробуй остальные уравнения получить сам. Если не получится, в 21-00 выложу остальные решения
Ромб - это параллелограмм, у которого все стороны равны.
Ромб имеет 2 диагонали. Каждая из диагоналей ромба делит его на 2 симметричных треугольника, поэтому, диагонали являются осями симметрии ромба.
На рисунке изображен ромб ABCD, с диагоналями АС и ВD.
AC и BD - оси симметрии ромба ABCD, поэтому нельзя построить фигуру, симметричную ромбу ABCD, относительно прямой BD.
Прямая BD - одна из осей симметрии, и ромб симметричен сам себе, относительно своей оси симметрии.
Наличие оси симметрии, характеризует ромб, как симметричную фигуру. то есть, фигуру, состоящую из отраженно равных частей, относительно прямой на плоскости.
в нашем случае, прямая AD, делит ромб на 2 отраженно равных треугольника (симметричных треугольника) ABD и CDB.
Рисунок во вложении