1) Строим данный угол и проводим биссектрису. От вершины биссектрисы откладываем диагональ АВ и делим ее пополам, точкой О. Проводим перпендикуляр через точку О к диагонали АВ, который пересекает стороны угла в точках С и D, которые являются вершинами искомого ромба. 2) Пусть дан угол а и диагональ d. Необходимо построить ромб, в котором один из углов равен а, а противолежащая диагональ равна d. Предположим, что существует ромб ABCD, в котором диагональ Диагональ АС — биссектриса Проведем через точку A прямую и отложим отрезки по разные стороны от точки А, следовательно, прямоугольник. Построим Проведем биссектрису AC угла BAD. Через точку А проведем прямую и от точки А отложим Проведем через прямые, параллельные АС, точки пересечения этих прямых со сторонами угла BAD обозначим соответственно В и D. Раствором циркуля, равным АВ, проведем дугу с центром В, при этом, точку пересечения дуги с прямой а обозначим С. Получим четырехугольник ABCD. Докажем, что ABCD — ромб в котором — по построению. Так как прямоугольник по построению, то отрезок АО — серединный перпендикуляр к BD и равнобедренный ОС серединный перпендикуляр в значит, — равнобедренный Так как по построению, то и ромб с По построению значит, искомый ромб.
ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить. Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение. Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение.
Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.