Дано: треугольник ABC - равнобедренный;
BD - биссектриса;
угол ABD = 34°;
AC = 24 см
Найти: угол B; угол BDC; сторону DC
1) ∠В = 2 × ∠ABD = 2 × 34° = 68°, т. к. BD - биссектриса делит Abc на равные углы.
2) треугольник ABC - равнобедренный => биссектриса, проведённая к основанию, является высотой => BD⊥AC и ∠BDC = 90°.
3) треугольник ABC - равнобедренный => биссектриса, проведённая к основанию, является медианой => DC = 1/2 × AC = 1/2 × 25 = 12,5 см.
ответ: ∠В = 68°; ∠BDC = 90°; DC = 12,5 см.
Решение
Высота есть среднее пропорциональное между проекциями катетов на гипотенузу, поэтому она равна СМ=√(АМ*МВ)=√(5.4*9.6)=√51.84=7.2/см/,
Зная высоту и проекцию, можно найти катеты, СВ=√(СМ²+МВ²)=√(7.2²+5.4²)=√(51.84+29.16)=√81=9/см/.
АС=√(СМ²+АМ²)=√(7.2²+9.6²)=√(51.84+92.16)=√144=12/см/, зная катеты, найдем гипотенузу. АВ=√(АС²+СВ²)=√(12²+9²)=√(144+81)=√225=15/см/
Зная катет и противолежащий угол, можно найти синус этого угла.
например угла А
sin∠A=СВ/АВ=9/15=3/5=0.6
ответ СМ=7.2 см
АС=12см
СВ=9 см
sin∠A=0.6
Дано, рисунок во вложении
Дано: треугольник ABC - равнобедренный;
BD - биссектриса;
угол ABD = 34°;
AC = 24 см
Найти: угол B; угол BDC; сторону DC
1) ∠В = 2 × ∠ABD = 2 × 34° = 68°, т. к. BD - биссектриса делит Abc на равные углы.
2) треугольник ABC - равнобедренный => биссектриса, проведённая к основанию, является высотой => BD⊥AC и ∠BDC = 90°.
3) треугольник ABC - равнобедренный => биссектриса, проведённая к основанию, является медианой => DC = 1/2 × AC = 1/2 × 25 = 12,5 см.
ответ: ∠В = 68°; ∠BDC = 90°; DC = 12,5 см.
Решение
Высота есть среднее пропорциональное между проекциями катетов на гипотенузу, поэтому она равна СМ=√(АМ*МВ)=√(5.4*9.6)=√51.84=7.2/см/,
Зная высоту и проекцию, можно найти катеты, СВ=√(СМ²+МВ²)=√(7.2²+5.4²)=√(51.84+29.16)=√81=9/см/.
АС=√(СМ²+АМ²)=√(7.2²+9.6²)=√(51.84+92.16)=√144=12/см/, зная катеты, найдем гипотенузу. АВ=√(АС²+СВ²)=√(12²+9²)=√(144+81)=√225=15/см/
Зная катет и противолежащий угол, можно найти синус этого угла.
например угла А
sin∠A=СВ/АВ=9/15=3/5=0.6
ответ СМ=7.2 см
АС=12см
СВ=9 см
sin∠A=0.6
Дано, рисунок во вложении