Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
ответ:Периметр трапеции равен 71 см
Объяснение:
Рассмотрим прямоугольник ВНМС
Он будет параллелограммом, т.к.
а) 2 высоты, проведенные к основанию параллельны
б) ВС || НМ (т.к. основания)
тогда ВС=МН (по св-ву параллелограмма)
МН=13, тогда
2) Рассмотрим прямоугльный треугольники АВН и ДМС
а) АВ=СД (т.к. трапеция равнобедренная)
б) ВН=СМ (по св-ву параллелограмма)
Вывод: треугольники равны по гипотенузе и катету, тогда АН=МД как соответственные элементы
3) АН=(28-13) : 2=7,5
4) Рассмотрим прямоугольный треугольник АВН
угол А + угол АВН = 90°, тогда угол АВН = 30°
В прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы. Тогда гипотенуза АВ = 2АН, АВ=2*7,5=15
5) АВ=СД (т.к. трапеция равнобедренная)
6) Периметр трапеции равен АВ+ВС+СД+АД=15+13+15+28=71 см
Объяснение:
Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
Получаем:
x + 5x = 180°
6x = 180°
x = 30° (Это мы нашли x, то есть ∠DOC)
∠COB = 30° * 5 = 150°.
Ну а дальше - дело техники.
∠COD = ∠BOA = 150°(все вертикальные углы равны)
∠BOC = ∠AOD = 30°(все вертикальные углы равны).
Задача решена.