Высоты AD и CE остроугольного треугольника ABC пересекаются в точке O. Оказалось, что ∠AOC = 120 градусов , и точка O делит одну из этих высот в отношении 2 : 1, считая от вершины треугольника. Найдите AC, если AB + 5BC = 15.
Итак, для начала находим NC: NC=AC:2 (т.к BN - медиана и делит сторону АC пополам) NC= 16:2=8 см Далее, по теореме Пифагора в прямоугольном треугольнике СКN ищем по теореме Пифагора сторону ВN: BN^2 =BC^2 - CN^2 BN^2= 100см-64см =36 ВN=6 cм Медианы в равнобедренном треугольнике пересекаются в одной точке и делят ту медиану, что проведена к основанию в соотношении 1:2 (это свойство), т.е. BO:ON=2:1. Таким образом, мы 6 представляем в 3 частях (2+1=3), т.е 6:3=2 см - 1 часть. То есть PN=1 часть, т.е 2 см (2см*1) Рассмотрим треугольник NOC По теореме Пифагора: CO^2=NC^2+NO^2 CO^2= 64+4=68 CO= корень из 68.
Δ АВС - равнобедренный
ВК = 30 см - биссектриса к основанию АС, она же и медиана Δ АВС ⇒ АК=КС
NM = 16 см - средняя линия II АС ⇒AN=NB
NK = ? - средняя линия II ВС
NM x ВК в т.О и деляться ей пополам, т.к. Δ NMB подобен Δ АВС по 3-м углам, ⇒ Δ NMB равнобедренный и ВО его высота, биссектриса и медиана.
ВО=ВК т.к. NM средняя линия Δ АВС
Получаем
NO=1/2NM= 16/2=8
OK=1/2ВК= 30/2=15
Δ NOK прямоугольный, т.к. уже доказано, что BO высота Δ NMB ⇒ <BON = 90°
<NOK - смежный и =180°-<BON = 90°
По теореме Пифагора находим NK - гипотенузу Δ NOK
NK=√(NO²+OK²) = √(8²+15²)=√(64+225)=√289=17 см
NC=AC:2 (т.к BN - медиана и делит сторону АC пополам)
NC= 16:2=8 см
Далее, по теореме Пифагора в прямоугольном треугольнике СКN ищем по теореме Пифагора сторону ВN:
BN^2 =BC^2 - CN^2
BN^2= 100см-64см =36
ВN=6 cм
Медианы в равнобедренном треугольнике пересекаются в одной точке и делят ту медиану, что проведена к основанию в соотношении 1:2 (это свойство), т.е. BO:ON=2:1. Таким образом, мы 6 представляем в 3 частях (2+1=3), т.е 6:3=2 см - 1 часть.
То есть PN=1 часть, т.е 2 см (2см*1)
Рассмотрим треугольник NOC
По теореме Пифагора:
CO^2=NC^2+NO^2
CO^2= 64+4=68
CO= корень из 68.