№1. Т.к. угол BAD= углу BCM, а BC параллельно AD, то ABCM - параллелограмм. Тогда AB=CM=2, BC=AM=3.
№2 Т.к. нам даны углы в 90 градусов, то данная нам трапеция прямоугольная. Опустим высоту СМ из точки С. Тогда АВСМ - прямоугольник. СМ=АВ=8, ВС=АМ=4. По теореме Пифагора найдем CD из треугольника CMD, получаем MD=6. Значит AD=10. Площать ACD= половине высоты на сторону, к которой проведена высота, значит площадь ACD равна 40. А площать трапеции равна половине суммы оснований и умножить на высоту, площадь трапеции равна 56.
по теореме Фалеса прямые проведеные через середину третьей стороны параллельные данным сторонам(прямым содержащим стороны) пройдут через середины этих сторон, т.е. поделят стороны а и b пополам
А значит полученные отрезки будут средними линиями треугольниками. По свойству средней линии треугольника их длины будут равны половинам соотвествующих сторон, т.е. a/2 и b/2.
Две другие стороны четырехугольника равны половинам соотвествующих сторон треугольника, т.е. a/2 и b/2.
Периметр четырехугольника сумма длин всех его сторон
поэтому периметр полученного четырехугольника равен
№1. Т.к. угол BAD= углу BCM, а BC параллельно AD, то ABCM - параллелограмм. Тогда AB=CM=2, BC=AM=3.
№2 Т.к. нам даны углы в 90 градусов, то данная нам трапеция прямоугольная. Опустим высоту СМ из точки С. Тогда АВСМ - прямоугольник. СМ=АВ=8, ВС=АМ=4. По теореме Пифагора найдем CD из треугольника CMD, получаем MD=6. Значит AD=10. Площать ACD= половине высоты на сторону, к которой проведена высота, значит площадь ACD равна 40. А площать трапеции равна половине суммы оснований и умножить на высоту, площадь трапеции равна 56.
по теореме Фалеса прямые проведеные через середину третьей стороны параллельные данным сторонам(прямым содержащим стороны) пройдут через середины этих сторон, т.е. поделят стороны а и b пополам
А значит полученные отрезки будут средними линиями треугольниками. По свойству средней линии треугольника их длины будут равны половинам соотвествующих сторон, т.е. a/2 и b/2.
Две другие стороны четырехугольника равны половинам соотвествующих сторон треугольника, т.е. a/2 и b/2.
Периметр четырехугольника сумма длин всех его сторон
поэтому периметр полученного четырехугольника равен
a/2+a/2+b/2+b/2=a+b
ответ: a+b