через две пересекающиеся прямые проходит плоскость, и притом только одна.
прямые l и m пересекаются, следовательно, лежат в одной плоскости а₁в₁в₂а₂.
из свойства параллельных плоскостей:
линии пересечения двух параллельных плоскостей третьей плоскостью параллельны.
отрезки а₁в₁ и а₂в₂ параллельны, т.к. лежат в параллельных плоскостях α и β и являются линиями пересечения этих плоскостей с плоскостью а₁в₁в₂а₂..
в ∆ а₁ов₁ и ∆ а₁ов₁ углы при о равны как вертикальные, и углы при а₁в₁ и а₂в₂ равны как накрестлежащие при пересечении параллельных прямых секущими l и m
следовательно,
треугольники ∆ а₁ов₁ и ∆ а₂ов₂ подобны по равенству углов.
Дано: ABC - равнобедренный треугольник; AB = BC = 13дм, АС = 10см. Найти: решение: У равнобедренного треугольника боковые стороны и углы при основания равны С вершины В проведём перпендикулярно к стороне основанию АС высоту ВК. Делит она сторону на отрезки: С прямоугольного треугольника ABK ( ∠AKB=90°): По т. Пифагора высота ВК равна:
Площадь равнобедренного треугольника равна произведению стороны основания на высоту делённое на 2
Синус угла - это отношение противолежащего катета к гипотенузе:
Косинус угла - это отношение прилежащего катета к гипотенузе:
Тангенс угла - это отношение противолежащего катета к прилежащему катету
Котангенс угла - это отношение прилежащего катета к противолежащему катету
ответ:
по следствию 2 из аксиомы 1 стереометрии:
через две пересекающиеся прямые проходит плоскость, и притом только одна.
прямые l и m пересекаются, следовательно, лежат в одной плоскости а₁в₁в₂а₂.
из свойства параллельных плоскостей:
линии пересечения двух параллельных плоскостей третьей плоскостью параллельны.
отрезки а₁в₁ и а₂в₂ параллельны, т.к. лежат в параллельных плоскостях α и β и являются линиями пересечения этих плоскостей с плоскостью а₁в₁в₂а₂..
в ∆ а₁ов₁ и ∆ а₁ов₁ углы при о равны как вертикальные, и углы при а₁в₁ и а₂в₂ равны как накрестлежащие при пересечении параллельных прямых секущими l и m
следовательно,
треугольники ∆ а₁ов₁ и ∆ а₂ов₂ подобны по равенству углов.
тогда отношение а₁в₁: а₂в₂=3: 4.
12: а₂в₂=3/4
3 а₂в₂=48 см
а₂в₂=16 см
Найти:
решение:
У равнобедренного треугольника боковые стороны и углы при основания равны
С вершины В проведём перпендикулярно к стороне основанию АС высоту ВК. Делит она сторону на отрезки:
С прямоугольного треугольника ABK ( ∠AKB=90°):
По т. Пифагора высота ВК равна:
Площадь равнобедренного треугольника равна произведению стороны основания на высоту делённое на 2
Синус угла - это отношение противолежащего катета к гипотенузе:
Косинус угла - это отношение прилежащего катета к гипотенузе:
Тангенс угла - это отношение противолежащего катета к прилежащему катету
Котангенс угла - это отношение прилежащего катета к противолежащему катету