Пусть дан параллелограмм ABCD, где BH и BK - высоты параллелограмма BH пересекает AD в точке H, а BK пересекает DC в точке K проведем DB - диагональ и рассмотрим треугольник ABD - равнобедренный, так как BH -высота и медиана (по усл), тогда AB=BD аналогично треугольник BDC - равнобедренный, BD=BC AB=BD=BC, значит стороны параллелограмма равны. BHD - прямоугольный, HD=1/2 BD, значит <HBD=30, тогда <BDH=60 <BDH=<BAH=60 < BAD=BCD=60 (по свойству параллелограмма) <ABC=<CDA=120 ответ: 60; 60; 120; 120
BH пересекает AD в точке H, а BK пересекает DC в точке K
проведем DB - диагональ и рассмотрим треугольник ABD - равнобедренный, так как BH -высота и медиана (по усл), тогда AB=BD
аналогично треугольник BDC - равнобедренный, BD=BC
AB=BD=BC, значит стороны параллелограмма равны.
BHD - прямоугольный, HD=1/2 BD, значит <HBD=30, тогда <BDH=60
<BDH=<BAH=60
< BAD=BCD=60 (по свойству параллелограмма)
<ABC=<CDA=120
ответ: 60; 60; 120; 120