Высоты, проведённые к боковым сторонам AB и BC равнобедренного треугольника ABC, пересекаются в точке M. Прямая BM пересекает основание AC в точке N. Определи AN, если AC=14см.
Диагонали образуют с основаниями 2 равнобедренных прямоугольных треугольника.
Проведите через точку пересечения диагоналей высоту трапеции - она "состоит" из 2 отрезков, каждый из которых - высота (она же - медиана) в равнобедренном прямоугольном треугольнике, то есть каждая из этих "частей" высоты трапеции равна половине основания (ну, отрезок от точки пересечения диагоналей до большого основания равен половине большого основания, - как медиана в прямоугольном треугольнике :), и аналогично - с малым). Остается сложить :).
Диагонали образуют с основаниями 2 равнобедренных прямоугольных треугольника.
Проведите через точку пересечения диагоналей высоту трапеции - она "состоит" из 2 отрезков, каждый из которых - высота (она же - медиана) в равнобедренном прямоугольном треугольнике, то есть каждая из этих "частей" высоты трапеции равна половине основания (ну, отрезок от точки пересечения диагоналей до большого основания равен половине большого основания, - как медиана в прямоугольном треугольнике :), и аналогично - с малым). Остается сложить :).
Это только на вид - задача :)
Диагонали образуют с основаниями 2 равнобедренных прямоугольных треугольника.
Проведите через точку пересечения диагоналей высоту трапеции - она "состоит" из 2 отрезков, каждый из которых - высота (она же - медиана) в равнобедренном прямоугольном треугольнике, то есть каждая из этих "частей" высоты трапеции равна половине основания (ну, отрезок от точки пересечения диагоналей до большого основания равен половине большого основания, - как медиана в прямоугольном треугольнике :), и аналогично - с малым). Остается сложить :).
Это только на вид - задача :)
Диагонали образуют с основаниями 2 равнобедренных прямоугольных треугольника.
Проведите через точку пересечения диагоналей высоту трапеции - она "состоит" из 2 отрезков, каждый из которых - высота (она же - медиана) в равнобедренном прямоугольном треугольнике, то есть каждая из этих "частей" высоты трапеции равна половине основания (ну, отрезок от точки пересечения диагоналей до большого основания равен половине большого основания, - как медиана в прямоугольном треугольнике :), и аналогично - с малым). Остается сложить :).