1. Прямая называется касательной к окружности, если она перпендикулярна радиусу и имеет только одну точку пересечения с окружностью. Отрезки касательных к окружности проведённых из одной точки равны, покажу на иллюстрации.
2. Соединяем концы высоты и боковой стороны. Таким образом мы получаем прямоугольный треугольник. Строим его зеркальное отражение относительно его катета (высоты полученого равнобедренного треугольника).
3. Диаметр окружности в два раза больше чем радиус, следовательно: D = 2R D = R + 15 2R = R + 15 2R - R = 15 R = 15 см. D = 30 см.
Так как трапеция прямоугольная, мы уже знаем три стороны трапеции, оставшуюся сторону, можно найти через дополнительное построение, получив прямоугольный треугольник и по теореме Пифагора вычислить оставшуюся сторону:
Отрезки касательных к окружности проведённых из одной точки равны, покажу на иллюстрации.
2. Соединяем концы высоты и боковой стороны. Таким образом мы получаем прямоугольный треугольник. Строим его зеркальное отражение относительно его катета (высоты полученого равнобедренного треугольника).
3. Диаметр окружности в два раза больше чем радиус, следовательно:
D = 2R
D = R + 15
2R = R + 15
2R - R = 15
R = 15 см.
D = 30 см.
13 2/3; 19 2/3; 6√2
Объяснение:
Sтрапеции=(a+b)/2*h
Пусть меньшее основание трапеции равно x, тогда большее основание равно x+6;
Подставляем данные задачи в уравнение
100=(x+x+6)/2*6
100=(2x+6)/2*6
200=(2x+6)*6 (сокращаем на 2)
100=(2x+6)*3
100=6x+18
6x=100-18
6x=82
x=82/6
x=13 2/3
Вычисляем большее основание
13 2/3 + 6 = 41/3 + 6 = 41/3 + 18/3 = 59/3 = 19 2/3
Так как трапеция прямоугольная, мы уже знаем три стороны трапеции, оставшуюся сторону, можно найти через дополнительное построение, получив прямоугольный треугольник и по теореме Пифагора вычислить оставшуюся сторону:
a^2+b^2=c^2
b=h (высоте трапеции) = 6
a=6 (разница между основаниями)
6^2+6^2=36+36=72=6√2