В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Dinka1597
Dinka1597
23.05.2021 01:30 •  Геометрия

Выявить на территории Казахстана формирование и распространение неблагоприятных и опасных атмосферных явлений и и заполнить таблицу Неблагоприятные атмосферные

явления Основные регионы распространения Пути решения данных проблем

Кызылкумы Засухоустойчивые сорта,снегозадержание, лесные полосы

суховеи юг и юго-запад Казахстана (не менее одного)

сильные морозы Метеопрогноз, стойловое содержание скота в морозный период

пыльные бури степи Северного Казахстана, Шалкар, пески Улькен Борсык (не менее одного)

ураганы метеопрогноз

град повсеместно, Илейский Алатау Растрел грозовых облаков снарядами, содержащими иодистое серебро

туманы метеопрогноз

голодед Улытау, Каратау, Шу-Илейские горы (не менее одного)

[7]


Выявить на территории Казахстана формирование и распространение неблагоприятных и опасных атмосферны

Показать ответ
Ответ:
sapesalex
sapesalex
30.04.2022 08:53
Нарисуем квадрат АВСD.
Проведем диагональ АС.
Главное здесь - доказательно построить  равные NМ и МD.
Для этого  с циркуля из D радиусом, меньшим СD, на АС отметим точку М.
Из точки М тем же радиусом на ВС отметим точку N
( Заметим, что МD не может быть больше или  равно  СD. В противном случае равенства МN и МD быть не может, если точка N будет лежать именно на отрезке  ВС, а не на прямой ВС, что не одно и то же, как и не на стороне или прямой АВ, хотя нужный угол будет той же величины: см. рисунок).
Из точки М, как из вершины, построим квадрат МКСЕ.
Соединим N и М, М и D.
КМ=МЕ как стороны квадрата.
 МN=МD по построению, следовательно, прямоугольные треугольники КМN и МЕD равны,  и угол КМN=углу ЕМD
Так как угол КМЕ  равен 90°, то, если от него с одной стороны при вершине М отнять, а с другой прибавить по равному углу, получим угол, равный 90°
Угол МND - прямой
 МN=МD
Прямоугольный треугольник NМD - равнобедренный, углы при NД равны 45°.
ответ: Угол МDN=45°
—————
Наверняка существует и другой вариант решения, возможно, даже не один, но ответ будет таким же. 
-----
[email protected]
Дан квадрат abcd. на отрезках ac и bc взяты точки m и n, не с концами отрезков, соответственно, так,
0,0(0 оценок)
Ответ:
blubondovro0a
blubondovro0a
30.04.2022 08:53
Я все-таки рискну выложить решение через векторы. Может, кому-нибудь понадобится такое решение.
Попробуем свести задачу к нахождению угла между векторами NM и ND. Поместим начало координат в точку А. Тогда координаты точки D нам известны: D(K;0), где К - сторона данного нам квадрата. Координаты точки: M(Хо;Yо), причем эта точка лежит на диагонали квадрата и поэтому Yo=Xo. Запишем так: М(Хо;Хо).
Точки N и D - не что иное, как точки окружности радиуса R=MD=MN. Чтобы найти координаты точки N, надо найти точку пересечения окружности (с центром в точке М и радиусом MN=MD) и прямой ВС, параллельной координатной прямой Х. Уравнение этой прямой: Y=K, где К - сторона нашего квадрата. Итак, зная координаты трех точек: M, N и D, мы найдем все необходимое для вычисления угла между векторами NM и ND, то есть искомого угла α.
Отметим, что <MND=<MDN, так как треугольник MND равнобедренный (MN=MD).
Приступим к вычислениям.
Уравнение окружности с центром М(Хо;Хо) и радиусом R:
(Х-Хо)²+(Y-Хо)²=R², где R = |NM| (радиус равен модулю вектора MN). Чтобы найти точку пересечения этой окружности с прямой Y=K, надо подставить значение Y в уравнение окружности и тогда имеем: (Х-Хо)²+(К-Хо)²=|NM|². Но модуль вектора NM равен модулю вектора MD (радиусы одной окружности).
|MD| = √((K-Xo)²+Xo²), то есть R²=K²-2K*Xo+Xo²+Xo²=(K-Xo)²+Xo².
Подставим это значение в уравнение нашей точки пересечения:
(Х-Хо)²+(К-Хо)²=(K-Xo)²+Xo² и получим:  Х²-2Хо*Х+Хо²-Хо²=0 или Х(Х-2Хо) =0. У нас есть два корня, один из которых (Х=0) нас не удовлетворяет по условию задачи. Итак, Точка N имеет координаты: N(2*Xo;K). Теперь у нас есть координаты всех трех точек:
М(Хо;Хо), N(2*Xo;K) и D(К;0). Вычислим координаты векторов:
NM{Xo-2Xo;Xo-K} или NM{-Xo;Xo-K},  ND{K-2Xo;-K}.
Их модули: |NM| = √(Xo²+(Xo-K)²) и |ND| = √((K-Xo)²+K²).
Косинус угла между ними равен отношению их векторного произведения на произведение их модулей:
Cosα = (NM*ND)/(|NM|*|ND|). Подставим известные величины и получим:
Cosα = [(-Хо)*(K-2Xo) +(Xo-K)*(-K)]/*[√(Xo²+(Xo-K)²)*√((K-Xo)²+K²)].
Раскроем скобки и приведем подобные:
Cosα = (2Хо²-КХо+К²-КХо)/[√(2Хо²-КХо+К²-КХо)*√(4Хо-4КХо+2К²)].
Cosα = 2Хо²-2КХо+К²)/[√(2Хо²-2КХо+К²)*√2*√(2Хо-2КХо+К²)].
Cosα = 1/√2 = √2/2. Тогда угол α = 45°.
Итак, мы доказали, что угол α не зависит от нахождения точки М (в пределах от М(0;0) до М(К/2;К/2), так как при нахождении точки М выше точки пересечения диагоналей задача не имеет смысла, поскольку тогда не будет существовать точка N) и этот угол равен 45°.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота