4) Медиана делит противоположную сторону пополам ⇒ DС = ВD = 12 (см); ВС= 12+12 = 24 (см) АВ = ВС (по условию) АВ = 24см AB + DC = 24 + 24 = 48 (cм) - сумма двух сторон А дальше не решается, задача написана не до конца.
Пересекающиеся диагонали трапеции при основаниях образуют два треугольника: верхний с высотой 1см, нижний с высотой 3см. Эти треугольники подобные , потому что соответствующие углы у них равны как накрест лежащие при параллельных прямых и секущей. Коэффициент подобия равен отношению высот: к = 3. Следовательно, верхнее основание в 3 раза меньше нижнего: 12 : 3= 4см. Итак, мы имеем трапецию с основаниями 4см и 12 см и высотой 4см. Площадь трапеции равна произведению полусуммы оснований на высоту: S = 0,5(4 + 12) · 4 = 32 ответ: 32см²
Р = 4,8 * 3 = 14,4 (см)
ответ: 14,4 см - периметр Δ.
2) В равнобедренном Δ боковые стороны равны
7,3 + 7,3 = 14,6 (см) - сумма двух боковых сторон
22,3 - 14,6 = 7,7 (см)
ответ: 7,7 см - основание Δ
3) Углы при основании равнобедренного треугольника равны.
⇒ ∠А = ∠С.
Сумма углов треугольника = 180°=
⇒∠А = ∠С = (180° - 74°) : 2 = 106° : 2 = 54°
Биссектриса делит угол пополам,
⇒ ∠ВАD = ∠САD = 54° : 2 = 27°
ответ: ∠САD = 27°
4) Медиана делит противоположную сторону пополам
⇒ DС = ВD = 12 (см);
ВС= 12+12 = 24 (см)
АВ = ВС (по условию)
АВ = 24см
AB + DC = 24 + 24 = 48 (cм) - сумма двух сторон
А дальше не решается, задача написана не до конца.
Эти треугольники подобные , потому что соответствующие углы у них равны как накрест лежащие при параллельных прямых и секущей.
Коэффициент подобия равен отношению высот: к = 3. Следовательно, верхнее основание в 3 раза меньше нижнего: 12 : 3= 4см.
Итак, мы имеем трапецию с основаниями 4см и 12 см и высотой 4см.
Площадь трапеции равна произведению полусуммы оснований на высоту:
S = 0,5(4 + 12) · 4 = 32
ответ: 32см²