Рассмотрим треугольник, образованный половинами диагоналей (диагонали у прямоугольника равны, поэтому и половинки равны) малой стороной. так как половины диагоналей равны, то рассматриваемый треугольник, как минимум, равнобедренный. Углу при его основании равны. Сумма углов в треугольнике 180, значит угол при основании треугольника (180-60)/2=60. как видим, три угла равны 60град. Значит, рассматриваемый треугольник равносторонний, а равностороннего треугольника стороны равны. Значит половина диагонали равна 32. Значит вся диагональ 2×32=64см. Все. Нарисуйте и назовите буквами. Мои слова запишите через буквы
Дано: ∆ ABC — прямоугольный; Угол A = 60°; AB = 12 см; BO — высота. Найти: AO, OC.
Решение:
1. Рассмотрим ∆ ABC: угол B = 90°, угол А = 60°, AB = 12 см, BO — высота. Зная, что по теореме сумма всех углов треугольника = 180°, найдем угол C: 180° - угол A - угол B = 180° - 90° - 60° = 30°. По теореме катет, лежащий против угла в 30°, равен 1/2 гипотенузы. Катет AB = 12 см = 1/2 гипотенузы, следовательно, гипотенуза AC равна 12 * 2 = 24 см.
2. Т.к. BO — высота, угол AOB = 90°. Найдем угол ABO (сумма всех углов треугольника = 180°): 180° - угол A - угол O = 180° - 60° - 90° = 30°. Катет, лежащий против угла в 30° = 1/2 гипотенузы. AO = 1/2 AB = 6 см.
3. Найдем OC. Зная, что AC = 24 см, а AO = 6 см, OC = AC - AO = 24 см - 6 см = 18 см.
Нарисуйте и назовите буквами. Мои слова запишите через буквы
∆ ABC — прямоугольный;
Угол A = 60°;
AB = 12 см;
BO — высота.
Найти: AO, OC.
Решение:
1. Рассмотрим ∆ ABC: угол B = 90°, угол А = 60°, AB = 12 см, BO — высота. Зная, что по теореме сумма всех углов треугольника = 180°, найдем угол C: 180° - угол A - угол B = 180° - 90° - 60° = 30°. По теореме катет, лежащий против угла в 30°, равен 1/2 гипотенузы. Катет AB = 12 см = 1/2 гипотенузы, следовательно, гипотенуза AC равна 12 * 2 = 24 см.
2. Т.к. BO — высота, угол AOB = 90°. Найдем угол ABO (сумма всех углов треугольника = 180°): 180° - угол A - угол O = 180° - 60° - 90° = 30°. Катет, лежащий против угла в 30° = 1/2 гипотенузы. AO = 1/2 AB = 6 см.
3. Найдем OC. Зная, что AC = 24 см, а AO = 6 см, OC = AC - AO = 24 см - 6 см = 18 см.
ответ: 6 см и 18 см.