Только половина : в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой. доказательство пусть δ abc – равнобедренный с основанием ab, и cd – медиана, проведенная к основанию. в треугольниках cad и cbd углы cad и cbd равны, как углы при основании равнобедренного треугольника , стороны ac и bc равны по определению равнобедренного треугольника, стороны ad и bd равны, потому что d – середина отрезка ab . отсюда получаем, что δ acd = δ bcd . из равенства треугольников следует равенство соответствующих углов: acd = bcd, adc = bdc . из первого равенства следует, что cd – биссектриса. углы adc и bdc смежные, и в силу второго равенства они прямые, поэтому cd – высота треугольника. теорема доказана.
В параллелограмме АBCD угол А равен углу С, угол B равен углу D. а) К примеру, возьмем параллелограмм АBCD. Угол А обозначим за Х, угол B за 2Х (т.к один больше другого в 2 раза). Сумма углов одной стороны параллелограмма равна 180 градусам. Следовательно, Х + 2Х = 180, 3Х = 180, Х = 60. Соответственно второй угол будет равен 120 градусам. б) К примеру, возьмем параллелограмм АBCD. Угол А обозначим за Х, угол B за Х-24. Сумма углов одной стороны параллелограмма равна 180 градусам. Следовательно, Х + Х - 24 = 180. 2Х = 156. Х = 78. Следовательно, втрой угол будет равен 76-24 = 52.
а) К примеру, возьмем параллелограмм АBCD. Угол А обозначим за Х, угол B за 2Х (т.к один больше другого в 2 раза). Сумма углов одной стороны параллелограмма равна 180 градусам. Следовательно, Х + 2Х = 180, 3Х = 180, Х = 60. Соответственно второй угол будет равен 120 градусам.
б) К примеру, возьмем параллелограмм АBCD. Угол А обозначим за Х, угол B за Х-24. Сумма углов одной стороны параллелограмма равна 180 градусам. Следовательно, Х + Х - 24 = 180. 2Х = 156. Х = 78. Следовательно, втрой угол будет равен 76-24 = 52.