Яхта на соревнованиях плыла по морю 12 км на юг, 8 км на восток и 6 км на север.
Вычисли, на каком расстоянии от места старта находится яхта.
Стороны горизонта:
с
з в
ю
Яхта от места старта находится на расстоянии
км.
Дополнительный во какую фигуру получим, нарисовав данный маршрут?
Трапецию
Прямоугольную трапецию
Квадрат
Прямоугольный треугольник
Прямоугольник
Ромб
ответ: NM= 10см
Объяснение: высота NF делит ∆ MNK на два прямоугольных треугольника в которых высота NF является катетом. Рассмотрим полученный ∆NKF. По условиям угол NKF составляет 30°, а катет, который лежит напротив этого угла равен половине гипотенузы. Пусть катет NF будет х, тогда гипотенуза NK будет 2х. Составим уравнение и найдём стороны ∆MKF по теореме Пифагора:
NF²+FK²=NK²
x²+(6√3)²=(2x)²
x²+36×3=4x²
x²+108=4x²
x²-4x²= - 108
- 3x²= - 108
3x²=108
x²=108÷3
x²=36
x=6; сторона NF=6см, тогда гипотенуза NK будет 6×2=12см
Теперь найдём искомую сторону NM по теореме Пифагора, зная MF и NF:
NM²=MF²+NF²
NM=8²+6²=√(64+36)=√100=10см
NM=10см
ответ: NM= 10см
Объяснение: высота NF делит ∆ MNK на два прямоугольных треугольника в которых высота NF является катетом. Рассмотрим полученный ∆NKF. По условиям угол NKF составляет 30°, а катет, который лежит напротив этого угла равен половине гипотенузы. Пусть катет NF будет х, тогда гипотенуза NK будет 2х. Составим уравнение и найдём стороны ∆MKF по теореме Пифагора:
NF²+FK²=NK²
x²+(6√3)²=(2x)²
x²+36×3=4x²
x²+108=4x²
x²-4x²= - 108
- 3x²= - 108
3x²=108
x²=108÷3
x²=36
x=6; сторона NF=6см, тогда гипотенуза NK будет 6×2=12см
Теперь найдём искомую сторону NM по теореме Пифагора, зная MF и NF:
NM²=MF²+NF²
NM=8²+6²=√(64+36)=√100=10см
NM=10см