1) С транспортира и линейки строим прямой угол с вершиной в точке 0. Отложим на сторонах этого угла отрезки по 5 см и соединим их. Нужный треугольник построен .
2) Построив прямой угол, отложим по обе стороны от точки О отрезки ОА и ОС, равные половине гипотенузы. От каждой из этих точек с транспортира отложим углы 45° и продолжим их стороны до пересечения в точке В. Нужный треугольник построен.
Другой
В равнобедренном треугольнике высота является медианой и биссектрисой. А в прямоугольном треугольнике медиана равна половине гипотенузы. От точки 0 отложим по вертикальной стороне угла 2 см. Соединим точки и получим искомый равнобедренный прямоугольный треугольник с гипотенузой, равной 4 см.
В треугольнике АВС угол В равен 120°, а длина стороны АВ на 3√3 меньше полупериметра треугольника. Найдите радиус окружности, касающейся стороны ВС и продолжений сторон АВ и АС. Сделаем рисунок.Окружность, радиус которой нужно найти - вневписанная. Если вневписанная окружность касается стороны ВC треугольника ABC, отрезки касательных от вершины А до точек касания с вневписанной окружностью равны полупериметру треугольника.
Это утверждение вытекает из того, чтопо свойству отрезков касательных из точки вне окружности отрезки от В до точек касания равны, равны и отрезки от С до точек касания. Сумма их с соответствующими сторонами треугольника является его полупериметром. Центр данной окружности лежит на биссектрисе угла СВЕ. Так как этот угол смежный с углом АВС,он равен 60°, а угол ОВЕ=30°. Так как длина стороны АВ на 2√3 меньше полупериметра треугольника, а АЕ - равна полупериметру, то ВЕ=2√3. ОЕ:ВЕ= tg (30°) = 1/√3 ОЕ:ВЕ=R:2√3 R:2√3 = 1/√3 R=2√3 ·1/√3=2 Радиус равен 2 ответ: 2 Задача сложная, старалась делать как можно подробнее. Если что то не понятно, спрашивай
1) С транспортира и линейки строим прямой угол с вершиной в точке 0. Отложим на сторонах этого угла отрезки по 5 см и соединим их. Нужный треугольник построен .
2) Построив прямой угол, отложим по обе стороны от точки О отрезки ОА и ОС, равные половине гипотенузы. От каждой из этих точек с транспортира отложим углы 45° и продолжим их стороны до пересечения в точке В. Нужный треугольник построен.
Другой
В равнобедренном треугольнике высота является медианой и биссектрисой. А в прямоугольном треугольнике медиана равна половине гипотенузы. От точки 0 отложим по вертикальной стороне угла 2 см. Соединим точки и получим искомый равнобедренный прямоугольный треугольник с гипотенузой, равной 4 см.
полупериметра треугольника.
Найдите радиус окружности, касающейся стороны ВС и продолжений сторон АВ и АС.
Сделаем рисунок.Окружность, радиус которой нужно найти - вневписанная.
Если вневписанная окружность касается стороны ВC треугольника ABC, отрезки касательных от вершины А до точек касания с вневписанной окружностью равны полупериметру треугольника.
Это утверждение вытекает из того, чтопо свойству отрезков касательных из точки вне окружности отрезки от В до точек касания равны, равны и отрезки от С до точек касания. Сумма их с соответствующими сторонами треугольника является его полупериметром. Центр данной окружности лежит на биссектрисе угла СВЕ.
Так как этот угол смежный с углом АВС,он равен 60°, а угол ОВЕ=30°.
Так как длина стороны АВ на 2√3 меньше полупериметра треугольника, а АЕ - равна полупериметру, то ВЕ=2√3.
ОЕ:ВЕ= tg (30°) = 1/√3
ОЕ:ВЕ=R:2√3
R:2√3 = 1/√3
R=2√3 ·1/√3=2
Радиус равен 2
ответ: 2
Задача сложная, старалась делать как можно подробнее. Если что то не понятно, спрашивай