Объяснение: обозначим вершины пирамиды АВСД, а её высоту ДО. Соединим точку О с вершиной С. Получился прямоугольный треугольник ДОС. Угол СДО=30°, а катет СО, лежащий напротив него равен половине гипотенузы ДС. Пусть ОС=х, тогда ДС=2х. Зная величину высоты составим уравнение используя теорему Пифагора:
(2х)²-х²=(3√2)²
4х²-х²=9×2
3х²=18
х²=18/3
х²=6
х=√6
Итак: СО=√6
Проведём медиану- СН и ВК. Они при пересечении в точке О делятся в отношении 2: 1, начиная от вершины угла, и если СО=√6, то ОН=√6/2.
ВК=СН=√6+√6/21,5√6. В правильной трёхугольной пирамиде в основании лежит равносторонний треугольник поэтому медианы СН и ВК являются также его высотами и биссектрисами, делят угол 60° пополам, поскольку в равностороннем треугольнике все углы составляют по 60°. Рассмотрим ∆АВК. Он прямоугольный и АК и ВК являются катетами а АВ- гипотенуза.
Угол АВК=60/2=30°, а катет АК лежащий напротив него равен половине гипотенузы. Пусть АК=у, тогда АВ=2у, зная высоту ВК составим уравнение используя теорему Пифагора:
АВ²-АК²=ВК²
(2у)²-у²=(1,5√6)²
4у²-у²=2,25×6
3у²=13,5
у²=13,5/3
у²=4,5
у=√4,5=3√0,5,
Тогда АВ=ВС=АС=2×3√0,5=6√0,5
Найдём площадь основания по формуле:
S=a²√3/4=(6√0,5)²√3/4=36×0,5√3/4=
=18√3/4=4,5√3(ед²)
Теперь найдём объем пирамиды по формуле: V=⅓×Sосн×ДО=
ответ: 3*SQR(7)/4
Объяснение: Пусть АВ=х . Выразим cos BAD= cos Z= АВ/AD=x/3
(cosZ)^2= x^2/9 (1)
Cos BAC= cos 2Z= x/AC=x/sqr(14)
cos 2Z= 2*(cosZ)^2-1
x/sqr(14)=2*(cosZ)^2-1 (2)
Подставив (1) в (2) получим:
x/sqr(14)=2*x^2/9-1
2*sqr(14)*x^2 -x*9-9*sqr(14)=0
Решим это квадратное уравнение , используя дискриминант
D=81+4*9*2*14= 81+72*14=1089=33^2
Находим корень уравнения х1=(9+33)/(4*sqr(14)) =21/(2*sqr(14))=
21*sqr(14)/(2*14)=3*sqr(14)/4
Очевидно, что второй корень х2=(9-33)/(4*sqr(14))- отрицательный и поскольку х- длина катета,- смысла не имеет.
Найдем BD по т. Пифагора
BD^2=AD^2-AB^2=9-9*14/16=9-63/8= (72-63)/8=9/8
BD=3/(2*sqr(2))
sinZ= BD/AD=3/(2*sqr(2)) : 3= 1/(2*sqr(2))
Теперь найдем площадь треугольника ADC по формуле S=ab*sinZ/2
= AD*AC*sinZ/2
S= 3*sqr(14)/(2*sqr(2)) /2= 3*sqr(7)/4
Объяснение: обозначим вершины пирамиды АВСД, а её высоту ДО. Соединим точку О с вершиной С. Получился прямоугольный треугольник ДОС. Угол СДО=30°, а катет СО, лежащий напротив него равен половине гипотенузы ДС. Пусть ОС=х, тогда ДС=2х. Зная величину высоты составим уравнение используя теорему Пифагора:
(2х)²-х²=(3√2)²
4х²-х²=9×2
3х²=18
х²=18/3
х²=6
х=√6
Итак: СО=√6
Проведём медиану- СН и ВК. Они при пересечении в точке О делятся в отношении 2: 1, начиная от вершины угла, и если СО=√6, то ОН=√6/2.
ВК=СН=√6+√6/21,5√6. В правильной трёхугольной пирамиде в основании лежит равносторонний треугольник поэтому медианы СН и ВК являются также его высотами и биссектрисами, делят угол 60° пополам, поскольку в равностороннем треугольнике все углы составляют по 60°. Рассмотрим ∆АВК. Он прямоугольный и АК и ВК являются катетами а АВ- гипотенуза.
Угол АВК=60/2=30°, а катет АК лежащий напротив него равен половине гипотенузы. Пусть АК=у, тогда АВ=2у, зная высоту ВК составим уравнение используя теорему Пифагора:
АВ²-АК²=ВК²
(2у)²-у²=(1,5√6)²
4у²-у²=2,25×6
3у²=13,5
у²=13,5/3
у²=4,5
у=√4,5=3√0,5,
Тогда АВ=ВС=АС=2×3√0,5=6√0,5
Найдём площадь основания по формуле:
S=a²√3/4=(6√0,5)²√3/4=36×0,5√3/4=
=18√3/4=4,5√3(ед²)
Теперь найдём объем пирамиды по формуле: V=⅓×Sосн×ДО=
=⅓×4,5√3×3√2=4,5√3×√2=4,5√6(ед³)