Пусть сторона, к которой прилежат углы, данные в условии, будет основанием АС треугольника АВС. Из вершины В опустим к АС высоту ВН.
С ее мы отсекли от треугольника АВС равнобедренный прямоугольный треугольник АВН. Угол ВАС=45° по условию, АВН равен ему - из прямоугольногоо треугольника АВН. Обозначим катеты ВН и АН этого треугольника х ( т.к. они равны). Тогда НС=2-х, а сторона ВС, как гипотенуза треугольника ВНС, в котором, катет противолежащий углу 30°, равен х, равна 2х. Составим уравнение по теореме Пифагора для стороны ВС треугольника ВНС.
10) Я плохо вижу картинку, но, скоре всего, там есть накрест лежащие углы, которые равны.
11) Заметим вертикальные углы. И значит треугольник АВЕ равен треугольнику ЕDC по 1 признаку рав-ва треугольников. Следовательно угол ECD равен углу АВЕ. Они накрест лежащие. И по теореме о накрести лежащих углах AB параллельна CD/
12) Так как треугольник равнобедренный, то углы при основании равны. Угол PNC равен углу PCN и они оба равны углу CNO (за О я взял точку на нижней прямой). И так как PCN раен CNO и они накрест лежащие, то прямые параллельны.
Сделаем рисунок.
Пусть сторона, к которой прилежат углы, данные в условии, будет основанием АС треугольника АВС.
Из вершины В опустим к АС высоту ВН.
С ее мы отсекли от треугольника АВС равнобедренный прямоугольный треугольник АВН.
Угол ВАС=45° по условию, АВН равен ему - из прямоугольногоо треугольника АВН.
Обозначим катеты ВН и АН этого треугольника х ( т.к. они равны).
Тогда НС=2-х,
а сторона ВС, как гипотенуза треугольника ВНС, в котором, катет противолежащий углу 30°, равен х, равна 2х.
Составим уравнение по теореме Пифагора для стороны ВС треугольника ВНС.
ВС²=НС²+ВН²
(2х)²= х ²+(2-х)²
4х²= х²+ 4-4х+х ²
2х²+ 4х-4 =0
D=b²-4ac=4²-4·2·-4=48
х1= (- 4 +√48) :4= -( 4 - 4√3) :4= -4(1-√3):4=√3-1
ВС=2(√3-1) ≈1,464
АВ=(√3-1)√2=√6-√2≈ 2,449-1,414≈1,035
Сделай мой ответ лучшим.
Объяснение:
10) Я плохо вижу картинку, но, скоре всего, там есть накрест лежащие углы, которые равны.
11) Заметим вертикальные углы. И значит треугольник АВЕ равен треугольнику ЕDC по 1 признаку рав-ва треугольников. Следовательно угол ECD равен углу АВЕ. Они накрест лежащие. И по теореме о накрести лежащих углах AB параллельна CD/
12) Так как треугольник равнобедренный, то углы при основании равны. Угол PNC равен углу PCN и они оба равны углу CNO (за О я взял точку на нижней прямой). И так как PCN раен CNO и они накрест лежащие, то прямые параллельны.