Які твердження є правильними площини АSВ та АВС перетинаються по прямій АВ площини АSВ та АВС мають лише одну спільну т.В площини АSВ та АВС перетинаються по прямій ВС пряма АS перетинає площину ВСД в т.В пряма АS перетинає площину ВСД в т.А
Обозн.ромб АВСД,и мы знаем что у ромба все стороны равны,а их у него четыре и поэтому сторона ромба будет 100:4=25см. Диаг.ромба перпенд. перес. и точка перес.делится пополам,и поэт. образ. прям.треуг. пускай он будет АВОпо теор.Пифагора половина второго диагоналя будет равна АО в квадрате=ВО в квадрате- АВв квадрате,подставляем значения и получаем,АО =под корнем 25 в квадр. - 24 в квадрате =49 из под корня выходит 7,значит вторая диагональ АС=14,отсюда S=1/2d1*d2,d1=48,d2=14,ответ 336 см в квадрате
Решение: Обозначим противоположные параллельные стороны параллелограмма: нижнее и верхнее за (а) каждую, а боковые стороны за(с) каждую. Тогда периметр Р=2а+2с или 30=2а+2с (запомним это уравнение) Площадь S=a*h или 36=a*h Синус острого угла равен отношения катета (а он является высотой параллелограмма h) к гипотенузе (к боковой стороне с) sinα=2/3 или 2/3=h/c Из площади параллелограмма и sinα можно найти (h)^ 36=a*h h=36/a 2/3=h/c h=2*c/3 Приравняем величины (h): 36/а=2с/3 (запоминаем и это уравнение: Решим систему уравнений: 30=2а+2с 36/а=2с/3
30=2а+2с (разделим каждый член уравнения на (2) 36*3=2с*а
15=а+с 108=2ас Из первого уравнения системы найдём значение (а) а=15-с Подставим значение (а) во второе уравнение: 108=2*(15-с)*с 108=30с-2с² 2с²-30с+108=0 с1,2=(30+-D)/2*2 D=√(900-4*2*108)=√(900-864)=√36=6 c1,2=(30+-6)/4 с1=(30+6)/4=36/4=9 с2=(30-6)/4=24/4=6 В данном случае оба значения положительные, поэтому могут быть боковыми сторонами параллелограмма Примем боковую сторону параллелограмма с=9(см) Подставим с=9 в а=15-с а=15-9=6 (см) -верхние и нижние стороны параллелограмма Если мы примем боковую строну с, равную 6см, то а=15-6=9см То есть в данном параллелограмме боковые стороны могут по 6см, а нижнее и верхнее основания по 9см. Оба ответа являются правильными.
ответ: Стороны параллелограмма: боковые 9см; вернее и нижнее основания 6см
Обозначим противоположные параллельные стороны параллелограмма: нижнее и верхнее за (а) каждую, а боковые стороны за(с) каждую.
Тогда периметр Р=2а+2с или 30=2а+2с (запомним это уравнение)
Площадь S=a*h или 36=a*h
Синус острого угла равен отношения катета (а он является высотой параллелограмма h) к гипотенузе (к боковой стороне с)
sinα=2/3 или 2/3=h/c
Из площади параллелограмма и sinα можно найти (h)^
36=a*h h=36/a
2/3=h/c h=2*c/3
Приравняем величины (h):
36/а=2с/3 (запоминаем и это уравнение:
Решим систему уравнений:
30=2а+2с
36/а=2с/3
30=2а+2с (разделим каждый член уравнения на (2)
36*3=2с*а
15=а+с
108=2ас
Из первого уравнения системы найдём значение (а)
а=15-с
Подставим значение (а) во второе уравнение:
108=2*(15-с)*с
108=30с-2с²
2с²-30с+108=0
с1,2=(30+-D)/2*2
D=√(900-4*2*108)=√(900-864)=√36=6
c1,2=(30+-6)/4
с1=(30+6)/4=36/4=9
с2=(30-6)/4=24/4=6
В данном случае оба значения положительные, поэтому могут быть боковыми сторонами параллелограмма
Примем боковую сторону параллелограмма с=9(см)
Подставим с=9 в а=15-с
а=15-9=6 (см) -верхние и нижние стороны параллелограмма
Если мы примем боковую строну с, равную 6см, то а=15-6=9см
То есть в данном параллелограмме боковые стороны могут по 6см, а нижнее и верхнее основания по 9см. Оба ответа являются правильными.
ответ: Стороны параллелограмма: боковые 9см; вернее и нижнее основания 6см