Які з наведених наборів відрізків є сторонами подібних трикутників? А Б В Г 4м, 6м, 9м і 12м, 18м, 27м 3м, 5м, 6м і 7м, 10м, 12м 5м, 4м, 5м і 15м, 12м, 25м 10м, 13м, 17м і 5м, 6,5м, 9м
2) Проведем высоту из вершины С. Тогда трапеция поделится на прямоугольник ABCH(т.к все углы =90 градусов) и треугольник CHD. Рассмотрим треугольник CHD. В нем:
угол CDH=45
угол CHD=90
=> угол HCD=45(тк сумма углов в треугольнике =180 градусов)
Тк два угла равны, то треугольник равнобедренный (по признаку равнобедренного треугольника)=>HD=CH
Тк BCHD - прямоугольник, то BC=AH=6(по свойству параллелограмма (а любой прямоугольник - это параллелограмм)
HD=AD-AH=12-6=6
=>CH=HD=6
Значит, высота трапеции = 6
Значит, S трапеции ABCD=9*6=54 см
Старалась максимально подробно, рисунок в прикрепленном файле
ответ: 54
Объяснение: 1) S трапеции =1/2*h*(BC+AD)
=>S трапеции ABCD=1/2*h*(6+12)=1/2*h*18=9*h
2) Проведем высоту из вершины С. Тогда трапеция поделится на прямоугольник ABCH(т.к все углы =90 градусов) и треугольник CHD. Рассмотрим треугольник CHD. В нем:
угол CDH=45
угол CHD=90
=> угол HCD=45(тк сумма углов в треугольнике =180 градусов)
Тк два угла равны, то треугольник равнобедренный (по признаку равнобедренного треугольника)=>HD=CH
Тк BCHD - прямоугольник, то BC=AH=6(по свойству параллелограмма (а любой прямоугольник - это параллелограмм)
HD=AD-AH=12-6=6
=>CH=HD=6
Значит, высота трапеции = 6
Значит, S трапеции ABCD=9*6=54 см
Старалась максимально подробно, рисунок в прикрепленном файле
Знак ∪ использован, как знак дуги.
По условию ∪ВС - ∪АС = 40°, а ∪ВС + ∪АС = 180°, так как АВ - диаметр.
∪АС = (180° - 40°)/2 = 70°.
∪ВС = ∪АС + 40° = 110°
∠АВС вписанный, опирается на дугу АС, значит
∠АВС = ∪АС/2 = 70°/2 = 35°.
∠ВАС вписанный, опирается на дугу ВС, значит
∠ВАС = ∪ВС/2 = 110°/2 = 55°
Радиус, проведенный в точку касания, перпендикулярен касательной, поэтому ∠ОАВ = 90°.
∠ОАС = ∠ОАВ - ∠ВАС = 90° - 55° = 35°
Вписанный угол, опирающийся на полуокружность, прямой. Поэтому
∠АСВ = 90°.
∠АСО = ∠АСВ = 90° как смежные.
ΔАОС: ∠АСО = 90°, ∠ОАС = 35°
∠АОС = 90° - 35° = 55° так как сумма острых углов прямоугольного треугольника 90°.