Высота, опущенная на гипотенузу прямоугольного треугольника, равна среднему геометрическому отрезков, на которые она делит гипотенузу. Пусть в прямоугольном треугольнике ABC с гипотенузой C проведена высота CH, при этом AH=x, BH=x+5 (по условию, один из этих отрезков больше другого на 5 см). Тогда CH²=AH*BH, 6²=x(x+5), x²+5x=36, x²+5x-36=0. Решим это квадратное уравнение: D=25+36*4=169=13², x₁=(-5+13)/2=4, x₂=(-5-13)/2=-9, x₂ - посторонний корень, так как длина отрезка - положительное число. Тогда AH=4, BH=9, AB=13. Рассмотрим прямоугольный треугольник ACH, в нём катеты AH и CH равны 4 и 6, тогда гипотенуза AC по теореме Пифагора равна √4²+6²=√52. Аналогично, рассмотрим прямоугольный треугольник BCH, в котором катеты CH и BH равны 6 и 9, тогда гипотенуза BC по теореме Пифагора равна √6²+9²=√117.
Таким образом, стороны треугольника равны √52, √117, 13.
Пусть ABCD - параллелограмм, стороны AB=CD=26 см, стороны AD=BC=32 см. Угол B равен углу D и они по 150 градусов, а углы A и C по 30 градуов, т.к. сумма односторонних углов в параллелограмме равна 180 градусов. Проведем высоту из точки B, обозначим точку её пересечения со стороной AD-О. У нас получился прямоугольный треугольник AOB. В коротором угол AOB=90 градусов, угол BAO=30 градусов, гипотенуза AB=26 см. 1) Найдем нашу высоиту BO. По теореме синусов и косинусов: катет, лежащий против угла в 30 градусов, равен половине гипотенузы, т.е. BO=0.5*AB=0.5*26=13 см. 2) Плотщадь параллелограмма S=основание*h=AD*BO=32*13=416 см2. ответ: S=416 см2.
Таким образом, стороны треугольника равны √52, √117, 13.