Расстояние от центра окружности (основания конуса) ОА до хорды CD = 9см. Расстояние от центра окружности (основания конуса) ОН до плоскости CDS равно 4,5см. Хорда СD перпендикулярна диаметру окружности основания. Отрезок SA перпендикулярен хорде CD. Отрезок ОН перпендикулярен плоскости CDS, то есть ОН перпендикулярен SA. В прямоугольном треугольнике OНА катет ОН равен половине гипотенузы ОА, (так как 4,5 = 9/2), значит угол SAO = 30°. По Пифагору SA² - SO² = OA². Но SA = 2*SO (так как SO лежит против угла 30°), значит 4SO² - SO² = 81, а SO² = 81/3. Отсюда SO = 9/√3 = 3√3cм.
Центр вписанной в угол окружности лежит на его биссектрисе. Вписанная в сектор окружность касается дуги сектора в точке пересечения биссектрисы с дугой сектора - в точке М. Проведем радиус ОМ в эту точку. К точке М проведем касательную АВ до пересечения с продолжениями сторон сектора. Треугольник АОВ - равнобедренный, т.к. углы А и В равны 45° ( из треугольников АМО и ВМО) Окружность, вписанная в сектор, вписана также в равнобедренный прямоугольный треугольник, в котором радиус сектора является медианой. ⇒АВ=10, АМ=МВ=5, АО=ОВ=5√2 по свойству гипотенузы равнобедренного прямоугольного треугольника. Радиус вписанной в прямоугольный треугольник окружности находят по формуле: r=(a+b-c):2 r=(10√2 -10):2=5(√2 -1) Площадь круга S=πr²=5²(√2 -1)² S=25π (3-2√2) и это примерно 4,29π см² или ≈13,475 см²
Расстояние от центра окружности (основания конуса) ОН до плоскости CDS равно 4,5см.
Хорда СD перпендикулярна диаметру окружности основания.
Отрезок SA перпендикулярен хорде CD.
Отрезок ОН перпендикулярен плоскости CDS, то есть ОН перпендикулярен SA.
В прямоугольном треугольнике OНА катет ОН равен половине гипотенузы ОА, (так как 4,5 = 9/2), значит угол SAO = 30°. По Пифагору SA² - SO² = OA².
Но SA = 2*SO (так как SO лежит против угла 30°), значит 4SO² - SO² = 81,
а SO² = 81/3.
Отсюда SO = 9/√3 = 3√3cм.
ответ: высота конуса равна 3√3cм.
Вписанная в сектор окружность касается дуги сектора в точке пересечения биссектрисы с дугой сектора - в точке М.
Проведем радиус ОМ в эту точку.
К точке М проведем касательную АВ до пересечения с продолжениями сторон сектора.
Треугольник АОВ - равнобедренный, т.к. углы А и В равны 45° ( из треугольников АМО и ВМО)
Окружность, вписанная в сектор, вписана также в равнобедренный прямоугольный треугольник, в котором радиус сектора является медианой. ⇒АВ=10, АМ=МВ=5,
АО=ОВ=5√2 по свойству гипотенузы равнобедренного прямоугольного треугольника.
Радиус вписанной в прямоугольный треугольник окружности находят по формуле:
r=(a+b-c):2
r=(10√2 -10):2=5(√2 -1)
Площадь круга
S=πr²=5²(√2 -1)²
S=25π (3-2√2) и это примерно 4,29π см² или ≈13,475 см²