Определение: Пусть "a" и "b" - неколлинеарные векторы. Если вектор представлен в виде c= ax + by, где x и y - некоторые числа, то говорят, что вектор разложен по векторам "a" и "b" . Числа x и y называются коэффициентами разложения вектора "c" по векторам "a" и "b".
Итак, векторное уравнение: ах + bу = с, то есть
(4;3)·х + (2;-5)·у = (-2;-34)
(4х;3х)+(2у;-5у) = (-2;-34)
4х+2у = -2 (1)
3х-5у = -34 (2)
Решаем систему и находим х и у:
Из (1): 2х+у = -1 => у= -1 - 2х. Подставляем это значение в (2):
Ра́диус (лат. radius — спица колеса, луч) — отрезок, соединяющий центр окружности (или сферы) с любой точкой, лежащей на окружности (или поверхности сферы), а также длина этого отрезка. Окру́жность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая. Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину. Хо́рда — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы). Круг – множество точек плоскости, удаленных от заданной точки этой плоскости на расстояние, не превышающее заданное (радиус круга).
Вектор с = -3а + 5b
Объяснение:
Определение: Пусть "a" и "b" - неколлинеарные векторы. Если вектор представлен в виде c= ax + by, где x и y - некоторые числа, то говорят, что вектор разложен по векторам "a" и "b" . Числа x и y называются коэффициентами разложения вектора "c" по векторам "a" и "b".
Итак, векторное уравнение: ах + bу = с, то есть
(4;3)·х + (2;-5)·у = (-2;-34)
(4х;3х)+(2у;-5у) = (-2;-34)
4х+2у = -2 (1)
3х-5у = -34 (2)
Решаем систему и находим х и у:
Из (1): 2х+у = -1 => у= -1 - 2х. Подставляем это значение в (2):
3х -5(-1-2х) = -34
3х+5+10х = -34
13х = -39
х = -3
y = -1+6 = 5 =>
вектор с = -3а+5b
P.S. Для наглядности приведен рисунок.
Окру́жность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая.
Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину.
Хо́рда — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы).
Круг – множество точек плоскости, удаленных от заданной точки этой плоскости на расстояние, не превышающее заданное (радиус круга).