Высота прямоугольного треугольника, проведенная к гипотенузе, может быть найдена тем или иным в зависимости от данных в условии задачи.
Длина высоты прямоугольного треугольника, проведенной к гипотенузе, может быть найдена по формуле
или, в другой записи,
где BK и KC — проекции катетов на гипотенузу (отрезки, на которые высота делит гипотенузу).
Высоту, проведенную к гипотенузе, можно найти через площадь прямоугольного треугольника. Если применить формулу для нахождения площади треугольника
(половина произведения стороны на высоту, проведенную к этой стороне) к гипотенузе и высоте, проведенной к гипотенузе, получим:
Отсюда можем найти высоту как отношение удвоенной площади треугольника к длине гипотенузы:
Так как площадь прямоугольного треугольника равна половине произведения катетов:
То есть длина высоты, проведенной к гипотенузе, равна отношению произведения катетов к гипотенузе. Если обозначить длины катетов через a и b, длину гипотенузы — через с, формулу можно переписать в виде
Так как радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы, длину высоты можно выразить через катеты и радиус описанной окружности:
2у + 3х = 1 Сложим и получим 4у = 8 у = 2 х = - 1.
О(-1; 2) - центр гиперболы. Каноническое уравнение скорректируется:
(х+1)^2 / a^2 - (y-2)^2 /b^2 = 1.
Найдем а^2 и b^2.
Уравнение данного эллипса:
x^2 /3 + y^2 /7 = 1
Эллипс вытянут вдоль оси У и фокусы расположены на оси У на расстоянии:
Кор(7-3) = 2 от начала координат. Берем верхний фокус (0; 2), видим что он расположен на одном расстоянии от оси Х, как и центр гиперболы.
Пусть (0; 2) - правый фокус гиперболы. Расстояние до центра гиперболы равно 1.
a^2 + b^2 = 1
Еще одно уравнение для а и b получим из углового коэффициента асимптот. b/a = 3/2 ( 3/2 получится если в уравнении асимптоты выразить у через х). Итак имеем систему:
a^2 + b^2 = 1 13a^2/4 = 1 a^2 = 4/13
b/a = 3/2 b = 3a/2 b^2 = 9/13
Уравнение гиперболы:
13(x+1)^2 /4 - 13(y-2)^2 /9 = 1
б) Левый фокус гиперболы находится в т.(-2; 2), правый фокус -
в т. (0; 2).
Значит вершина параболы смещена на 2 относительно начала координат по оси У. Каноническое уравнение будет иметь вид:
Высота прямоугольного треугольника, проведенная к гипотенузе, может быть найдена тем или иным в зависимости от данных в условии задачи.
Длина высоты прямоугольного треугольника, проведенной к гипотенузе, может быть найдена по формуле
или, в другой записи,
где BK и KC — проекции катетов на гипотенузу (отрезки, на которые высота делит гипотенузу).
Высоту, проведенную к гипотенузе, можно найти через площадь прямоугольного треугольника. Если применить формулу для нахождения площади треугольника
(половина произведения стороны на высоту, проведенную к этой стороне) к гипотенузе и высоте, проведенной к гипотенузе, получим:
Отсюда можем найти высоту как отношение удвоенной площади треугольника к длине гипотенузы:
Так как площадь прямоугольного треугольника равна половине произведения катетов:
То есть длина высоты, проведенной к гипотенузе, равна отношению произведения катетов к гипотенузе. Если обозначить длины катетов через a и b, длину гипотенузы — через с, формулу можно переписать в виде
Так как радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы, длину высоты можно выразить через катеты и радиус описанной окружности:
а) Найдем точку пересечения асимптот: (центр гиперболы)
2у - 3х = 7
2у + 3х = 1 Сложим и получим 4у = 8 у = 2 х = - 1.
О(-1; 2) - центр гиперболы. Каноническое уравнение скорректируется:
(х+1)^2 / a^2 - (y-2)^2 /b^2 = 1.
Найдем а^2 и b^2.
Уравнение данного эллипса:
x^2 /3 + y^2 /7 = 1
Эллипс вытянут вдоль оси У и фокусы расположены на оси У на расстоянии:
Кор(7-3) = 2 от начала координат. Берем верхний фокус (0; 2), видим что он расположен на одном расстоянии от оси Х, как и центр гиперболы.
Пусть (0; 2) - правый фокус гиперболы. Расстояние до центра гиперболы равно 1.
a^2 + b^2 = 1
Еще одно уравнение для а и b получим из углового коэффициента асимптот. b/a = 3/2 ( 3/2 получится если в уравнении асимптоты выразить у через х). Итак имеем систему:
a^2 + b^2 = 1 13a^2/4 = 1 a^2 = 4/13
b/a = 3/2 b = 3a/2 b^2 = 9/13
Уравнение гиперболы:
13(x+1)^2 /4 - 13(y-2)^2 /9 = 1
б) Левый фокус гиперболы находится в т.(-2; 2), правый фокус -
в т. (0; 2).
Значит вершина параболы смещена на 2 относительно начала координат по оси У. Каноническое уравнение будет иметь вид:
(y-2)^2 = -2px (ветви влево!)
F = p/2 = 2 Отсюда p = 4
(y-2)^2 = -4x