равнобедренный треугольник вписанный круг, который делит боковую сторону в отношение 2 : 3, начиная от вершины, что лежит против основы. Найдите периметр треугольника, если его основа равна 12 см.Треугольник АВС, АВ=ВС, АС=12, точка М касание на АВ, точка Н касание на ВС, точка К касание на АС, ВМ/АМ=2/3 = ВН/СН, АМ=АК как касательные проведенные из одной точки =3, СК=СН как касательные проведенные из одной точки = 3АС=АК+СК=3+3=6 = 12 см1 часть=12/6=2АВ=3+2=5 частей = 5 х 2 =10 = ВСпериметр = 10+10+12=32
окей я добавил фото с рисунками
часть 1
1. 3)
2.
дано:
δавс
∠а-112°
найти:
∠в
находим угол при основании
1)180-112=68°
углы при основании равны, зная это находим третий угол
2)∠=180-68*2=44°
ответ: 44°
3.
дано:
δавс
∠в=30°
ас=3 см
найти:
вс
сторона, лежащая напротив угла в 30 в 2 раза меньше гипотенузы, зная это
вс=3*2=6 см
ответ: 6 см
4.
дано:
окружность с центром о
ав-хорда
∠оав=48°
найти:
∠аов
если соединить точки хорды с центром получим равнобедренный треугольник, зная, что углы у него при основании равны, считаем угол аов
∠аов=180-48*2=84°
ответ: 84°
часть 2
5.
дано:
δавс
найти:
∠при основании
углы при основании равны
пусть угол при основании будет х°, значит противолежащий основанию 7х°, исходя из этого составим уравнение
7х+х+х=180
решаем как линейное уравнение
9х=180
х=180: 9
х=20
ответ: 20°