Якщо AC- діагональ чотирикутника ABCD, а медiани трикутникiв ABC 1 ABD, проведені до сторони АС, рiвнi мiж собою і лежать на одній прямій, то чотирикутник ABCD:
Порассуждаем. Здесь нужно вспомнить теорему о неравенстве треугольника, хотя и без нее можно догадаться, что если треугольник равнобедренный, значит, две его стороны равны между собой. Тогда, выбирая из 5 или 10, понимаем, что если основание равно 10, а две стороны по 5, то они сойдутся на середине основания, и никакого треугольника не получится, или получится то, что называется "Вырожденный" треугольник, у которого все три вершины лежат на одной прямой. В привычном нам треугольнике сумма длин двух его сторон больше длины третьей стороны.⇒ В данном треугольнике основанием будет сторона, равная 5 см, боковые стороны равны по 10 см. 10+10>5 – неравенство сторон треугольника соблюдено.
Пусть в трапеции ABCD AD, BC - основания, а диагонали пересекаются в точке O. В треугольнике AOD проведем высоту OH. Так как трапеция равнобедренная, AO=DO, и в прямоугольном треугольнике AOD острые углы равны 45 градусам. Тогда в прямоугольном треугольнике AOH один из углов равен 45 градусам, тогда и второй угол равен 45 градусам, тогда катеты равны, AH=OH. Аналогично проведем высоту OM в треугольнике BOC, получим, что BM=MO (треугольник BMO прямоугольный и равнобедренный). Тогда высота трапеции - HM - равна AH+BM - полусумме оснований - средней линии. Площадь равна произведению средней линии на высоту, тогда она равна 6*6=36.
Здесь нужно вспомнить теорему о неравенстве треугольника, хотя и без нее можно догадаться, что если треугольник равнобедренный, значит, две его стороны равны между собой.
Тогда, выбирая из 5 или 10, понимаем, что если основание равно 10, а две стороны по 5, то они сойдутся на середине основания, и никакого треугольника не получится, или получится то, что называется "Вырожденный" треугольник, у которого все три вершины лежат на одной прямой.
В привычном нам треугольнике сумма длин двух его сторон больше длины третьей стороны.⇒
В данном треугольнике основанием будет сторона, равная 5 см, боковые стороны равны по 10 см.
10+10>5 – неравенство сторон треугольника соблюдено.
Пусть в трапеции ABCD AD, BC - основания, а диагонали пересекаются в точке O. В треугольнике AOD проведем высоту OH. Так как трапеция равнобедренная, AO=DO, и в прямоугольном треугольнике AOD острые углы равны 45 градусам. Тогда в прямоугольном треугольнике AOH один из углов равен 45 градусам, тогда и второй угол равен 45 градусам, тогда катеты равны, AH=OH. Аналогично проведем высоту OM в треугольнике BOC, получим, что BM=MO (треугольник BMO прямоугольный и равнобедренный). Тогда высота трапеции - HM - равна AH+BM - полусумме оснований - средней линии. Площадь равна произведению средней линии на высоту, тогда она равна 6*6=36.