Пирамида правильная, значит в основании правильный треугольник, в который вписали окружность. работаем в этом треугольнике: Проведём в нём две высоты к разным сторонам, они точкой пересечения будут делиться в отношении 2:1 считая от вершины. Так вот эта одна часть нам и дана в качестве радиуса,т.е. она равна 12., следовательно, вторая часть в два раза больше и равна 24. Теперь переходим в пирамиду проведём высоту, она упадёт в центр окружности( ту самую точку пересечения высот нашего основания). и образует прямоугольный треугольник, гипотенуза которого нам дана, как боковое ребро=26 . А второй катет мы нашли, он равен 24 по теореме пифагора х-высота х^2+24^2=26^2 х^2= 676-576 х^2=100 х=10
Центром тяжести треугольника является точка пересечения его медиан. Пусть в треугольнике АВС медиана ВТ, точка М- центр тяжести,, КЕ проходит через М и параллельна АС.
В треугольниках АВС и КВЕ угол при вершине В общий, соответственные углы при пересечении АС и КЕ боковыми сторонами равны ( КЕ||АС, АВ и СВ - секущие). Следовательно, ∆ КВЕ подобен ∆АВС. По свойству медиан ВМ:МТ=2:1, ⇒ ВЕ:ЕС=2:1, а k=ВЕ:ВС=2/3 Отношение площадей подобных фигур равно квадрату коэффициента подобия.
Ѕ(КВЕ):Ѕ(АВС)=k²=4/9.
Примем коэффициент отношения площадей равным а. Тогда Ѕ(АКЕС)=Ѕ(АВС)-Ѕ(КВЕ)=9а-4а=5а ⇒ Ѕ(КВЕ):Ѕ(АКЕС)=4а:5а=4/5
Теперь переходим в пирамиду проведём высоту, она упадёт в центр окружности( ту самую точку пересечения высот нашего основания). и образует прямоугольный треугольник, гипотенуза которого нам дана, как боковое ребро=26 . А второй катет мы нашли, он равен 24
по теореме пифагора
х-высота
х^2+24^2=26^2
х^2= 676-576
х^2=100
х=10
Объяснение:
Центром тяжести треугольника является точка пересечения его медиан. Пусть в треугольнике АВС медиана ВТ, точка М- центр тяжести,, КЕ проходит через М и параллельна АС.
В треугольниках АВС и КВЕ угол при вершине В общий, соответственные углы при пересечении АС и КЕ боковыми сторонами равны ( КЕ||АС, АВ и СВ - секущие). Следовательно, ∆ КВЕ подобен ∆АВС. По свойству медиан ВМ:МТ=2:1, ⇒ ВЕ:ЕС=2:1, а k=ВЕ:ВС=2/3 Отношение площадей подобных фигур равно квадрату коэффициента подобия.
Ѕ(КВЕ):Ѕ(АВС)=k²=4/9.
Примем коэффициент отношения площадей равным а. Тогда Ѕ(АКЕС)=Ѕ(АВС)-Ѕ(КВЕ)=9а-4а=5а ⇒ Ѕ(КВЕ):Ѕ(АКЕС)=4а:5а=4/5