Якщо кулю радіуса 5 см перетнути площиною, яка знаходиться на відстані 4 см від центра кулі, то площа круга перерізу дорівнюватиме: а) 25π см2; б) 9π см2; в) 16 см2; г) 16π см2.
а) Так как у ∆ АВН катет напротив угла 30° равен 2 то гипотенуза ( в два раза больше) равна 4. Периметр равен 2 (ВС+АВ) ( по определению противоположные стороны равны)
б)Так как у ∆ЕКР высота является медианой он равнобедренный (свойство) тогда угол КРЕ = углу КЕР= углу М = а (свойство параллелограмма) и односторонний ему равен (180°- а)
в)∆QRN — равносторонний так как ST=QR(по определению параллелограмма)=4 ( что равно QN) тогда угол Q = 60° = углу S и односторонний ему угол Т = 180°-60°=120°
Схематический рисунок осевого сечения шара, вписанного в конус – окружность с радиусом r (радиус шара), вписанная в треугольник АВС. В данной задаче треугольник АВС правильный, его сторона равна диаметру основания конуса. ⇒ АВ=ВС=АС=d=2R
Высота ВН треугольника АВС – высота конуса ВН=АВ•sin60°=2R•√3/2=R√3. Подставим значение высоты в формулу объёма конуса:
V(к)=πR²•h/3= πR²•R√3/3=πR³/√3 ⇒ πR³/√3=36
Радиус r окружности, вписанной в правильный треугольник, равен 1/3 высоты этого треугольника ( высоты конуса). r=OH=(R√3):3=R/√3
Подставим найденное значение радиуса шара в формулу его объёма:
а)8+2а
б)а и (180°-а)°
в) Р=22, углы 60° и 120°
Объяснение:
а) Так как у ∆ АВН катет напротив угла 30° равен 2 то гипотенуза ( в два раза больше) равна 4. Периметр равен 2 (ВС+АВ) ( по определению противоположные стороны равны)
б)Так как у ∆ЕКР высота является медианой он равнобедренный (свойство) тогда угол КРЕ = углу КЕР= углу М = а (свойство параллелограмма) и односторонний ему равен (180°- а)
в)∆QRN — равносторонний так как ST=QR(по определению параллелограмма)=4 ( что равно QN) тогда угол Q = 60° = углу S и односторонний ему угол Т = 180°-60°=120°
ответ: 16 (ед. объёма)
Подробное объяснение:
Схематический рисунок осевого сечения шара, вписанного в конус – окружность с радиусом r (радиус шара), вписанная в треугольник АВС. В данной задаче треугольник АВС правильный, его сторона равна диаметру основания конуса. ⇒ АВ=ВС=АС=d=2R
Высота ВН треугольника АВС – высота конуса ВН=АВ•sin60°=2R•√3/2=R√3. Подставим значение высоты в формулу объёма конуса:
V(к)=πR²•h/3= πR²•R√3/3=πR³/√3 ⇒ πR³/√3=36
Радиус r окружности, вписанной в правильный треугольник, равен 1/3 высоты этого треугольника ( высоты конуса). r=OH=(R√3):3=R/√3
Подставим найденное значение радиуса шара в формулу его объёма:
V(ш)=4π(R/√3)³/3=4πR³/9√3
Из найденного объёма конуса πR³/√3=36
подставим это значение в выражение объёма шара:
V(ш)=4•36/9=16 (ед. объёма)