Чтобы найти площадь прямоугольного треугольника, надо воспользоваться специальной формулой. Вот она:
S=1/2ab, где а и b - катеты прямоугольного треугольника. Сейчас мы не можем воспользоваться этой формулой, так как нам не известен другой катет этого треугольника. Найдём его по теореме Пифагора:
c^2=a^2+b^2 - теорема Пифагора в общем виде.
30^2=18^2+b^2
900=324+b^2
b^2=900-324
b^2=576
b=24 - другой катет. Теперь подставим числа в формулу площади и получим:
S=1/2×18×24=216. Это наш ответ, запишем его правильно:
абсд равнобедренная трапеция, ад нижнее основание длиной 16, бс верхнее основание длиной 10, аб и сд боковые равные стороны. У равнобедренрой трапеции боковые стороны и диагонали рааны. Точка пересечения диагоналей о, все углы около нее прямые по условию. Проведеи через о перпендикуляр к основаниям кл, к на верхнем, л на нижнем. Треугтдьник всо равнобедренный прямоугольный, ок в нем высота, биссектриса и медиана, причем, медиана, проведенная к гипотенузе, значит равна половине гипотенузы бс, то есть, 5. Аналогично, ол равно 8.
Чтобы найти площадь прямоугольного треугольника, надо воспользоваться специальной формулой. Вот она:
S=1/2ab, где а и b - катеты прямоугольного треугольника. Сейчас мы не можем воспользоваться этой формулой, так как нам не известен другой катет этого треугольника. Найдём его по теореме Пифагора:
c^2=a^2+b^2 - теорема Пифагора в общем виде.
30^2=18^2+b^2
900=324+b^2
b^2=900-324
b^2=576
b=24 - другой катет. Теперь подставим числа в формулу площади и получим:
S=1/2×18×24=216. Это наш ответ, запишем его правильно:
ответ: S=216
абсд равнобедренная трапеция, ад нижнее основание длиной 16, бс верхнее основание длиной 10, аб и сд боковые равные стороны. У равнобедренрой трапеции боковые стороны и диагонали рааны. Точка пересечения диагоналей о, все углы около нее прямые по условию. Проведеи через о перпендикуляр к основаниям кл, к на верхнем, л на нижнем. Треугтдьник всо равнобедренный прямоугольный, ок в нем высота, биссектриса и медиана, причем, медиана, проведенная к гипотенузе, значит равна половине гипотенузы бс, то есть, 5. Аналогично, ол равно 8.
Поэтому высота кл равна 13.