Обозначим вершины параллелограмма АВСД. Соразмерно условию сделаем и рассмотрим рисунок. Противоположные стороны параллелограмма параллельны и равны. Высота параллелограмма перпендикулярна его противоположным сторонам. ВН ⊥ ВС и ⊥ АД ВМ ⊥ АВ и ⊥ прямой, содержащей СД ⇒ Угол АВМ - прямой, угол АВН=90º-60º, ⇒ угол ВАН=30º Противоположные углы параллелограмма равны. ⇒ угол ВСД= углу ВАД=30º Катет ВН в треугольнике АВН противолежит углу 30º. Гипотенуза в два раза больше катета, противолежащего углу 30º. АВ=ВН:sin (30º)=6: 0,5=12 см Катет ВМ в треугольнике ВСМ противолежит углу 30º. ВС=ВМ:sin (30º)=16: 0,5=32 см Площадь параллелограмма равна произведению его высоты на сторону, к которой она проведена. S АВСД=6*32=192 см²илиS АВСД=16*12=192 см² или S АВСД=16*12=192 см²
ответ: 14,4 см.
Объяснение:
"Стороны треугольника равны 36см, 25см и 29см. Найти высоту треугольника проведенную к меньшей стороне."
***
S=ah, где а- основание, h-высота проведенная к основанию а.
По теореме Герона
S=√p(p−a)(p−b)(p−c) , где S – это площадь треугольника; a, b, c – стороны треугольника; p – это полупериметр треугольника. : p=(a+b+c)/2.
***
a=36см b=25 см с=29 см.
р=(36+25+29)/2= 90/2=45;
S=√[45(45-36)(45-25)(45-29)]=√45*9*20*16=√129 600=360 см².
***
По формуле S=ah находим h:
h=S/a, где а=25 см.
h=360/25=14,4 см.
Соразмерно условию сделаем и рассмотрим рисунок.
Противоположные стороны параллелограмма параллельны и равны.
Высота параллелограмма перпендикулярна его противоположным сторонам.
ВН ⊥ ВС и ⊥ АД
ВМ ⊥ АВ и ⊥ прямой, содержащей СД ⇒
Угол АВМ - прямой, угол АВН=90º-60º, ⇒
угол ВАН=30º
Противоположные углы параллелограмма равны. ⇒
угол ВСД= углу ВАД=30º
Катет ВН в треугольнике АВН противолежит углу 30º.
Гипотенуза в два раза больше катета, противолежащего углу 30º.
АВ=ВН:sin (30º)=6: 0,5=12 см
Катет ВМ в треугольнике ВСМ противолежит углу 30º.
ВС=ВМ:sin (30º)=16: 0,5=32 см
Площадь параллелограмма равна произведению его высоты на сторону, к которой она проведена.
S АВСД=6*32=192 см²илиS АВСД=16*12=192 см²
или
S АВСД=16*12=192 см²