60) S =(PK+MN)· h/2= 10·10=100 так как средняя линия равна половине сумм оснований, а это 2 радиуса по 5 единиц и высота там равна диаметру -10 ед.
59) ОК =MN/2=20/2=10 так как это радиус окружности
58) ML= MN+LK-NK=2+7-6=3 cложим все части сторон получим : 2+7+6+3=18 (частей) следовательно периметр делим на 18 . 54:18=3 (ед) - составляет 1 часть . Далее MN= 2·3=6 NK=6·3=18 LK=7·3=21 ML=3·3=9
57) АD = 15-8=7 так как сумма противоположных сторон равна 6+9=15 следовательно по свойству вписанной окружности и других противоположных сторон =15! P= BC+CD+AD+AB=8+9+7+6=30 ед
60 °
Объяснение:
1. Вершины прямоугольника А, В, С, Д . ВН перпендикуляр к диагонали ВД. О - точка
пересечения диагоналей ВД и АС.
2. По условию задачи ∠СВН : ∠АВН = 6 : 3. То есть, ∠СВН = 2∠АВН .
3. ∠СВН + ∠АВН = 90°. Заменяем в этом выражении ∠СВН на 2∠АВН:
∠АВН + 2∠АВН = 90°.
∠АВН = 30°.
4. ∠ВАН = 180° - ∠АВН - ∠АНВ = 180° - 30° - 90° = 60°.
5. Треугольник АВО - равнобедренный. Следовательно, ∠АВО = ∠ВАО = 60°.
6. Вычисляем острый угол между диагоналями ∠АОВ:
∠АОВ = 180° - (∠АВО + ∠ВАО) = 180° - 120° = 60°.
ответ: острый угол между диагоналями ∠АОВ = 60°.
Объяснение:
60) S =(PK+MN)· h/2= 10·10=100 так как средняя линия равна половине сумм оснований, а это 2 радиуса по 5 единиц и высота там равна диаметру -10 ед.
59) ОК =MN/2=20/2=10 так как это радиус окружности
58) ML= MN+LK-NK=2+7-6=3 cложим все части сторон получим : 2+7+6+3=18 (частей) следовательно периметр делим на 18 . 54:18=3 (ед) - составляет 1 часть . Далее MN= 2·3=6 NK=6·3=18 LK=7·3=21 ML=3·3=9
57) АD = 15-8=7 так как сумма противоположных сторон равна 6+9=15 следовательно по свойству вписанной окружности и других противоположных сторон =15! P= BC+CD+AD+AB=8+9+7+6=30 ед