Дано: в треугольнике АВС проведены медианы AA1=9 и BB1=12,сторона AB =10. Точка пересечения медиан - это точка О.
По свойству медиан АО = (2/3)*9 = 6, ОА1 = 3. ВО = (2/3)*12 = 8, ОВ1 = 4.
По трём сторонам треугольника АВО находим его площадь (формула Герона). Полупериметр р =(10+8+6)/2 = 24/2 = 12. S = √(12*2*4*6) = √(24*24) = 24. Площадь треугольника АВО составляет 1/3 треугольника АВС. Тогда S(АВC) = 3*24 = 72 кв.ед.
По соотношению квадратов сторон треугольника АВО (10² = 8² + 6²) видно, что он прямоугольный. Значит, медианы пересекаются под прямым углом. Отсюда находим стороны: ВС = 2√(8² + 3²) = 2√(64 + 9) = 2√73. АС = 2√(6² + 4²) = 2√(36 + 16) = 2√52. Теперь можно найти длину медианы СС1 по формуле: mc = (1/2)*√(2a² + 2b² - c²). СС1 = (1/2)√(2*292 + 2*208 - 100) = (1/2)*√900 = 15.
Высота AA1 треугольника ABC равна 12 и делит BC на отрезки A1B = 5; A1C = 9; (сие загадочное утверждение можно получить миллионом проще всего - составляя два Пифагоровых треугольника 5, 12, 13 и 9, 12, 15 катетами 12 так, чтобы катеты 5 и 9 продолжали друг друга) Отсюда из подобия CB1B и CA1A CB1/BC = CA1/CA; CB1 = 14*9/15; (или, то же самое, cos(C) =9/15 = 3/5; CB1 = 14*cos(C)); CB1 = 42/5; BB2/AA2 = CB1/CA; BB2 = 6*(42/5)/15 = 84/25; Точно также cos(B) = 5/13; BC1 = 14*5/13; CC2 = 6*(14*5/13)/13 = 420/169;
Точка пересечения медиан - это точка О.
По свойству медиан АО = (2/3)*9 = 6, ОА1 = 3.
ВО = (2/3)*12 = 8, ОВ1 = 4.
По трём сторонам треугольника АВО находим его площадь (формула Герона).
Полупериметр р =(10+8+6)/2 = 24/2 = 12.
S = √(12*2*4*6) = √(24*24) = 24.
Площадь треугольника АВО составляет 1/3 треугольника АВС.
Тогда S(АВC) = 3*24 = 72 кв.ед.
По соотношению квадратов сторон треугольника АВО (10² = 8² + 6²) видно, что он прямоугольный.
Значит, медианы пересекаются под прямым углом.
Отсюда находим стороны:
ВС = 2√(8² + 3²) = 2√(64 + 9) = 2√73.
АС = 2√(6² + 4²) = 2√(36 + 16) = 2√52.
Теперь можно найти длину медианы СС1 по формуле:
mc = (1/2)*√(2a² + 2b² - c²).
СС1 = (1/2)√(2*292 + 2*208 - 100) = (1/2)*√900 = 15.
(сие загадочное утверждение можно получить миллионом проще всего - составляя два Пифагоровых треугольника 5, 12, 13 и 9, 12, 15 катетами 12 так, чтобы катеты 5 и 9 продолжали друг друга)
Отсюда из подобия CB1B и CA1A
CB1/BC = CA1/CA; CB1 = 14*9/15; (или, то же самое, cos(C) =9/15 = 3/5; CB1 = 14*cos(C)); CB1 = 42/5;
BB2/AA2 = CB1/CA; BB2 = 6*(42/5)/15 = 84/25;
Точно также cos(B) = 5/13; BC1 = 14*5/13; CC2 = 6*(14*5/13)/13 = 420/169;