Дано: AB =BC; BH ⊥ AC ; AK =KB ; L∈ окружности (B,C , K ).
док. ΔAKL равнобедренный
Окружность проходит через три точки K ,B и C (описанная около треугольника KBC) ее центр это точка пересечения средних перпендикуляров KB и BС . AB =BC ⇒∠ABH =∠CBH (высота BH одновременно и биссектриса ; свойство равнобедренного треугольника ) . ∠KBL =∠CBL , L∈ BH * * *∠KBL=∠ABH ,∠CBL=∠CBH * * * (дугаKL)/2 = (дугаCL)/2 ⇒ KL =CL( равные дуги _равные хорда) , но CL =AL , следовательно KL =AL т.е. треугольник AKL равнобедренный .
Градусная мера дуги РК = 80 это означает, что центральный угол, опирающийся на эту дугу (это угол РОК))) равен 80 градусов, а вписанный угол, опирающийся на эту же дугу (это угол РМК))), равен 80/2 = 40 градусов... т.к. треугольник по условию равнобедренный, то угол РКМ = РМК = 40 и угол МРК = 100 градусов а про дугу МК можно порассуждать двумя вписанный угол РМК = 100, значит дуга = 100*2 = 200 градусов... или по дугам... дуги РК и РМ в сумме 80+80 = 160 градусов дуга МК --это то, что осталось от окружности, т.е. 360-160 = 200
док. ΔAKL равнобедренный
Окружность проходит через три точки K ,B и C (описанная около треугольника KBC) ее центр это точка пересечения средних перпендикуляров KB и BС .
AB =BC ⇒∠ABH =∠CBH (высота BH одновременно и биссектриса ; свойство равнобедренного треугольника ) .
∠KBL =∠CBL , L∈ BH * * *∠KBL=∠ABH ,∠CBL=∠CBH * * *
(дугаKL)/2 = (дугаCL)/2 ⇒ KL =CL( равные дуги _равные хорда) , но CL =AL , следовательно KL =AL т.е. треугольник AKL равнобедренный .
это означает, что центральный угол, опирающийся на эту дугу (это угол РОК)))
равен 80 градусов,
а вписанный угол, опирающийся на эту же дугу (это угол РМК))),
равен 80/2 = 40 градусов...
т.к. треугольник по условию равнобедренный, то угол РКМ = РМК = 40
и угол МРК = 100 градусов
а про дугу МК можно порассуждать двумя
вписанный угол РМК = 100, значит дуга = 100*2 = 200 градусов...
или по дугам...
дуги РК и РМ в сумме 80+80 = 160 градусов
дуга МК --это то, что осталось от окружности, т.е. 360-160 = 200