после построения mn получается треугольник mne, подобный треугольнику cde по первому признаку подобия (угол е - общий, углы с и nme равны как соответственные углы при пересечении двух параллельных прямых cd и mn секущей се). поскольку треугольники подобны, то
< mne = < cde = 68°
зная, что развернутый угол равен 180°, находим угол dnm:
< dnm = 180 - < mne = 180 - 68 = 112°
поскольку dm - биссектриса, то угол mdn = < cde : 2 = 68 : 2 = 34°
зная два угла треугольника dmn, находим неизвестный угол:
после построения mn получается треугольник mne, подобный треугольнику cde по первому признаку подобия (угол е - общий, углы с и nme равны как соответственные углы при пересечении двух параллельных прямых cd и mn секущей се). поскольку треугольники подобны, то
< mne = < cde = 68°
зная, что развернутый угол равен 180°, находим угол dnm:
< dnm = 180 - < mne = 180 - 68 = 112°
поскольку dm - биссектриса, то угол mdn = < cde : 2 = 68 : 2 = 34°
зная два угла треугольника dmn, находим неизвестный угол:
< dmn = 180 - < mdn - < dnm = 180 - 34 - 112 = 34°
Пусть S₁ - это площадь бо́льшего треугольника, а S₂ - площадь меньшего треугольника.
Пусть k > 1 (это значит, что в числителе будет стоять бо́льший треугольник).
Площади подобных треугольников относятся как квадрат коэффициента подобия.Отсюда -
1,28 (ед²).
- - -
Случай 2 - Площадь меньшего треугольника равна 8 (ед²).В этом случае наоборот k < 1 (в числителе будет стоять меньший треугольник).
S₁ - площадь бо́льшего треугольника, S₂ - площадь меньшего треугольника
Тогда -
50 (ед²).