Если прямая, не лежащая в плоскости, параллельна прямой, лежащей в плоскости, то она параллельна и самой плоскости.
Доказательство:
Пусть прямая b параллельна прямой а, лежащей в плоскости α. Докажем, что прямая b параллельна плоскости α.
Через две параллельные прямые можно провести единственную плоскость. Проведем плоскость β через прямые а и b.
Так как прямая а лежит в двух плоскостях, то она является линией пересечения плоскостей.
Предположим, что прямая b не параллельна плоскости α, т.е. пересекает ее. Тогда точка пересечения лежит на прямой а (на линии пересечения плоскостей), но тогда b пересекает прямую а, а это противоречит условию.
Объяснение:
А) х=(х₁+х₂):2 ,у=(у₁+у₂):2 ,где (х₁;у₁), (х₂;у ₂) -координаты концов отрезка , (х;у)-координаты середины.
А(2;4) ,В(8;-4) . О-середина АВ , найдем ее координаты.
х(О)= ( х(А)+х(В) )/2 у(О)= ( у(А)+у(В) )/2
х(О)= ( 2+8 )/2 у(О)= ( 4-4 )/2
х(О)= 5 у(О)= 0
О( 5 ; 0) .
В) d=√( (х₁-х₂)²+(у₁-у₂)² ), где (х₁;у₁), (х₂;у ₂) -координаты концов отрезка.
АО=√( (5-2)²+(0-4)² )=√(9+16)=5.
С) Уравнение окружности (x – х₀)²+ (y – у₀)² = R² , (х₀ ; у₀)-координаты центра.
(x – 5)²+ (y – 0)² = 5²
(x – 5)²+ y² =25
Верно.
Объяснение:
Это признак параллельности прямой и плоскости:
Если прямая, не лежащая в плоскости, параллельна прямой, лежащей в плоскости, то она параллельна и самой плоскости.
Доказательство:
Пусть прямая b параллельна прямой а, лежащей в плоскости α. Докажем, что прямая b параллельна плоскости α.
Через две параллельные прямые можно провести единственную плоскость. Проведем плоскость β через прямые а и b.
Так как прямая а лежит в двух плоскостях, то она является линией пересечения плоскостей.
Предположим, что прямая b не параллельна плоскости α, т.е. пересекает ее. Тогда точка пересечения лежит на прямой а (на линии пересечения плоскостей), но тогда b пересекает прямую а, а это противоречит условию.
Значит b║α. Что и требовалось доказать.