1. Одна сторона = х см, другая сторона = 2х см х+х+2х+2х=48 6х=48 х=8 8 см одна сторона 8*2=16 см другая сторона
2. Параллелограмм АBCD, биссектриса АК Угол ВАК = углу КАD, т.к. биссектриса АК делит угол ВАD пополам. Угол КAD = углу BKA, т.к. они накрест лежащие при AD параллельном ВС и секущей АК. Значит, угол ВАК = углу ВКА, т.к. все эти три угла равны между собой. Значит, треугольник АВК равнобедренный, т.к. углы при основании равны. Значит, АВ=ВК=7 см
Две окружности касаются внешним образом и имеют общую внешнюю касательную. Найдем расстояние между точками касания на прямой.
Отрезки касательных из одной точки равны (синие отрезки). Центры окружностей лежат на биссектрисах углов, образованных касательными. Угол между биссектрисами смежных углов - прямой. Точка касания окружностей лежит на линии центров. Радиусы, проведенные в точку касания, перпендикулярны касательной. Таким образом синий отрезок является высотой из прямого угла и равен среднему пропорциональному проекций катетов, √(R1*R2).
Расстояние между точками касания на прямой равно 2√(R1*R2).
х+х+2х+2х=48
6х=48
х=8
8 см одна сторона
8*2=16 см другая сторона
2. Параллелограмм АBCD, биссектриса АК
Угол ВАК = углу КАD, т.к. биссектриса АК делит угол ВАD пополам.
Угол КAD = углу BKA, т.к. они накрест лежащие при AD параллельном ВС и секущей АК.
Значит, угол ВАК = углу ВКА, т.к. все эти три угла равны между собой.
Значит, треугольник АВК равнобедренный, т.к. углы при основании равны.
Значит, АВ=ВК=7 см
7+14=21 см другая сторона параллелограмма
7+7+21+21=56 см периметр параллелограмма.
Две окружности касаются внешним образом и имеют общую внешнюю касательную. Найдем расстояние между точками касания на прямой.
Отрезки касательных из одной точки равны (синие отрезки). Центры окружностей лежат на биссектрисах углов, образованных касательными. Угол между биссектрисами смежных углов - прямой. Точка касания окружностей лежит на линии центров. Радиусы, проведенные в точку касания, перпендикулярны касательной. Таким образом синий отрезок является высотой из прямого угла и равен среднему пропорциональному проекций катетов, √(R1*R2).
Расстояние между точками касания на прямой равно 2√(R1*R2).
В задаче три пары аналогичных окружностей.
AB+BC=AC => 2√(x*25/16) +2√(9*25/16) =2√(9x) <=> 7√x =15 <=> x=225/49