Основание пирамиды - правильный треугольник. Следовательно, радиус описанной около него окружности (ОС) равен удвоенному радиусу вписанной окружности R=2*r = 6. А высота основания СН = 9. Высота пирамиды равна 4, а высота основания =9. Следовательно, центр описанного шара лежит ниже плоскости основания пирамиды. Центр шара Q лежит на линии высоты пирамиды и совпадает с центром окружности, описанной около равнобедренного треугольника, боковой стороной которого является боковое ребро пирамиды SC, а высотой – высота пирамиды SO. Рассмотрим прямоугольный треугольник ОCQ. В нем ОQ=Rш-H=Rш-4 (Н - высота пирамиды ,Rш - радиус шара), ОС=R=6 (радиус описанной около основания окружности). Тогда по Пифагору QC²=ОС²+OQ² или Rш²=R²+(Rш-H)². Раскрываем скобки: Rш²=R²+Rш²-2*Rш*Н+H² или Rш=(R²+H²)/2Н. В нашем случае Rш=(36+16)/2*4 = 6,5. Объем шара V=(4/3)*π*R³ =(4/3)*3,14*274,625 + 3449,29/3 ≈1149,76 ≈ 1150. ответ: Vш ≈ 1150.
Вписанный в правильную пирамиду шар касается основания пирамиды (в его центре и апофем пирамиды. То есть в сечении пирамиды по ее апофемам мы имеем равнобедренный треугольник со сторонами, равными апофкмам и основанием, равным стороне квадрата (основания). В этот треугольник вписана окружность (сечение шара). Есть формула радиуса вписанной в треугольник окружности: r=S/p, где S- площадь треугольника, а р - его полупериметр. Найдем высоту пирамиды по Пифагору: √(10²-6²)=8 (10 - апофема, 6 - половина стороны квадрата). Тогда площадь треугольника равна S=8*6=48. Тогда радиус вписанной в треугольник окружности равен r=S/p= 48/16 = 3. Это и есть радиус вписанного в пирамиду шара. Второй вариант: по формуле радиуса вписанной в равнобедренный треугольник окружности: r=(b/2)*√[(2a-b)/(2a+b)]. В нашем случае: r=6*√(1/4) = 3. Объем шара находим по формуле: V=(4/3)*π*r³ =36π. ответ V = 36π.
R=2*r = 6. А высота основания СН = 9.
Высота пирамиды равна 4, а высота основания =9. Следовательно, центр описанного шара лежит ниже плоскости основания пирамиды.
Центр шара Q лежит на линии высоты пирамиды и совпадает с центром окружности, описанной около равнобедренного треугольника, боковой стороной которого является боковое ребро пирамиды SC, а высотой – высота пирамиды SO.
Рассмотрим прямоугольный треугольник ОCQ.
В нем ОQ=Rш-H=Rш-4 (Н - высота пирамиды ,Rш - радиус шара), ОС=R=6 (радиус описанной около основания окружности).
Тогда по Пифагору QC²=ОС²+OQ² или Rш²=R²+(Rш-H)².
Раскрываем скобки: Rш²=R²+Rш²-2*Rш*Н+H² или
Rш=(R²+H²)/2Н. В нашем случае Rш=(36+16)/2*4 = 6,5.
Объем шара V=(4/3)*π*R³ =(4/3)*3,14*274,625 + 3449,29/3 ≈1149,76 ≈ 1150.
ответ: Vш ≈ 1150.
Есть формула радиуса вписанной в треугольник окружности: r=S/p, где S- площадь треугольника, а р - его полупериметр.
Найдем высоту пирамиды по Пифагору: √(10²-6²)=8 (10 - апофема, 6 - половина стороны квадрата). Тогда площадь треугольника равна S=8*6=48. Тогда радиус вписанной в треугольник окружности равен r=S/p= 48/16 = 3. Это и есть радиус вписанного в пирамиду шара.
Второй вариант: по формуле радиуса вписанной в равнобедренный треугольник окружности: r=(b/2)*√[(2a-b)/(2a+b)].
В нашем случае: r=6*√(1/4) = 3.
Объем шара находим по формуле: V=(4/3)*π*r³ =36π.
ответ V = 36π.