Із однієї точки до площини проведено дві рівні похилі, які утворюють з перпендикуляром кути по 45⁰. Знайдіть кут між проекціми похилих на цю площину, якщо похилі утворюють кут 60⁰ між собою.
№1 1. Каждый катет является средним пропорциональным между гипотенузой и проекцией этого катета на гипотенузу.Получаем ВА^2=AH*AC BA^2=2*(8+2)=2*10=20 BA= \sqrt{20} =[tex] 2\sqrt{5} 2. Аналогично, BC^2=HC*AC BC^2=8*(8+2)=8*10=80 BC=\sqrt{80} =\sqrt{4*4*5}=4 \sqrt{5} Sпр=2 \sqrt{5} * 4 \sqrt{5}=2*4*5=40 (см2) ответ: 40см2 №3 1. Опустим высоту на сторону ВС. Получим прямоугольный треугольник, в котором угол В=30. А т.к. в прям. треугольнике напротив угла в 30 градусов лежит катет равный половине гипотенузы, получаем, что DH=7см 2. Sпар.=DH*BC=7*8=56(cм2) ответ: 56см2
Точка M равноудалена от всех сторон правильного треугольника ABC. Значит, проекции наклонных – расстояний от М до сторон основания, – равны радиусу вписанной в этот треугольник окружности, а все наклонные, соединяющие М и вершины углов основания равны и наклонены к плоскости АВС под одинаковым углом. Их проекции равны радиусу описанной вокруг основания окружности. При этом МО - перпендикулярен плоскости основания и О - центр АВС.
1)
Две плоскости перпендикулярны тогда и только тогда, когда одна из них проходит через перпендикуляр к другой плоскости.
Прямая перпендикулярна плоскости, если она перпендикулярна двум прямым, лежащим в этой плоскости.
По т. о трех перпендикулярах СВ перпендикулярен АН и МН, значит, СВ ⊥ плоскости АМН (АМО).
Плоскость СМВ проходит через прямую СВ, перпендикулярную плоскости АМК. Следовательно, плоскости СМВ и АМО (АМН) перпендикулярны, ч.т.д.
2)
Угол между плоскостью ВМС и плоскостью АВС - двугранный угол между ними. Его величина равна величине линейного угла МНО, образованного при пересечении этих плоскостей перпендикулярной им плоскостью МНА (её перпендикулярность им доказана выше).
МО=2.
ОН=r вписанной в АВС окружности.
r=a/(2√3)=2/√3
tg ∠MHO=MO/OH=2:(2/√3)=√3- это тангенс 60º⇒
Угол между плоскостью ВМС и плоскостью АВС=60º
3)
Угол между MC и плоскостью ABC также найдем через его тангенс.
tg ∠MCO=MO/OC
MO=2
CО равно радиусу описанной вокруг правильного треугольника окружности:
OC=R =a/√3=4/√3
tg∠MCO=2:(4/√3)=√3/2= ≈0,866. что по таблице тангенсов является тангенсом угла ≈ 40º54'
1. Каждый катет является средним пропорциональным между гипотенузой и проекцией этого катета на гипотенузу.Получаем
ВА^2=AH*AC
BA^2=2*(8+2)=2*10=20
BA= \sqrt{20} =[tex] 2\sqrt{5}
2. Аналогично, BC^2=HC*AC
BC^2=8*(8+2)=8*10=80
BC=\sqrt{80} =\sqrt{4*4*5}=4 \sqrt{5}
Sпр=2 \sqrt{5} * 4 \sqrt{5}=2*4*5=40 (см2)
ответ: 40см2
№3
1. Опустим высоту на сторону ВС. Получим прямоугольный треугольник, в котором угол В=30. А т.к. в прям. треугольнике напротив угла в 30 градусов лежит катет равный половине гипотенузы, получаем, что DH=7см
2. Sпар.=DH*BC=7*8=56(cм2)
ответ: 56см2
Точка M равноудалена от всех сторон правильного треугольника ABC. Значит, проекции наклонных – расстояний от М до сторон основания, – равны радиусу вписанной в этот треугольник окружности, а все наклонные, соединяющие М и вершины углов основания равны и наклонены к плоскости АВС под одинаковым углом. Их проекции равны радиусу описанной вокруг основания окружности. При этом МО - перпендикулярен плоскости основания и О - центр АВС.
1)
Две плоскости перпендикулярны тогда и только тогда, когда одна из них проходит через перпендикуляр к другой плоскости.
Прямая перпендикулярна плоскости, если она перпендикулярна двум прямым, лежащим в этой плоскости.
По т. о трех перпендикулярах СВ перпендикулярен АН и МН, значит, СВ ⊥ плоскости АМН (АМО).
Плоскость СМВ проходит через прямую СВ, перпендикулярную плоскости АМК. Следовательно, плоскости СМВ и АМО (АМН) перпендикулярны, ч.т.д.
2)
Угол между плоскостью ВМС и плоскостью АВС - двугранный угол между ними. Его величина равна величине линейного угла МНО, образованного при пересечении этих плоскостей перпендикулярной им плоскостью МНА (её перпендикулярность им доказана выше).
МО=2.
ОН=r вписанной в АВС окружности.
r=a/(2√3)=2/√3
tg ∠MHO=MO/OH=2:(2/√3)=√3- это тангенс 60º⇒
Угол между плоскостью ВМС и плоскостью АВС=60º
3)
Угол между MC и плоскостью ABC также найдем через его тангенс.
tg ∠MCO=MO/OC
MO=2
CО равно радиусу описанной вокруг правильного треугольника окружности:
OC=R =a/√3=4/√3
tg∠MCO=2:(4/√3)=√3/2= ≈0,866. что по таблице тангенсов является тангенсом угла ≈ 40º54'