В данной работе я предлагаю вопросы для зачётов, задачи к этим зачётам и билеты к экзамену за курс геометрии 7 класса. Практический материал на экзамене можно предложить из задач к зачётам.
Надеюсь, что данная работа преподавателю математики проверить знания по данной дисциплине на начальной стадии её усвоения.
Для учащихся полезно будет по вопросам к зачётам готовить учебный материал самостоятельно, решая задачи, усваивать теоретические знания на практике, тем самым делая учебу интересной и успешной.
В 7 классе у наших детей появляется новый учебный предмет, который поначалу может показаться простым и не очень серьезным. Но это далеко не так. В былые годы наличие обязательного экзамена по геометрии с первых дней изучения новой дисциплины настраивало на серьёзный лад. Сейчас наличие задач по геометрии в ГИА и ЕГЭ по математике убедить учащихся в насущности и значимости предмета. Необходимость теоретических знаний понимается большинством учащихся при решении задач, доказательстве теорем, везде, где не обойтись без аргументированных объяснений. Задача учителя не только донести знания по предмету, но и заставить овладеть ими. Готовясь к зачётам дети вынуждены самостоятельно разбирать, заучивать учебный материал, а также консультироваться у учителя, друг у друга, доказывая друзьям теоремы и решая задачи на дополнительных занятиях и консультациях по математике. Этот процесс – объяснение товарищу – очень нравится ребятам, они при этом повышают свою самооценку, мотивацию к учебе, повышают качество собственных знаний. Учащиеся сначала побаиваются зачетов, но в процессе подготовки и при проведении понимают их необходимость, поэтому относятся более ответственно к данной технологии. Но как любое полезное для детей мероприятие, подготовка зачёта и экзамена, требует серьёзной и кропотливой работы со стороны взрослых, в данном случае – учителя математики. Надеюсь своей работой облегчить на начальном этапе труд педагога при подготовке к зачету по геометрии в 7 классе.
Дополним усеченную пирамиду до полной.
Так как в правильной пирамиде высота проходит через центр окружности, вписанной в основание, то О и О1 — центры окружностей, вписанных в АВС и А1В1С1.
Проведем SK⊥AC, а значит, и SK1⊥A1C1.
Тогда по теореме о трех перпендикулярах ОК⊥АС и OK1⊥A1C1. Значит, ОК и O1K1 — радиусы окружностей, вписанных в правильные треугольники ABC и A1B1C1.
Так что,
Далее, проведем K1H⊥KO.
Тогда K1O1OH — прямоугольник, значит, К1Н = ОО1
Так как ∠K1KH является линейным углом двугранного угла между основанием и боковой гранью, то ∠K1KH = 60° (по условию).
Тогда в
Так что
ОО1 = К1Н = 2 см ответ: 2 см.
Объяснение:
В данной работе я предлагаю вопросы для зачётов, задачи к этим зачётам и билеты к экзамену за курс геометрии 7 класса. Практический материал на экзамене можно предложить из задач к зачётам.
Надеюсь, что данная работа преподавателю математики проверить знания по данной дисциплине на начальной стадии её усвоения.
Для учащихся полезно будет по вопросам к зачётам готовить учебный материал самостоятельно, решая задачи, усваивать теоретические знания на практике, тем самым делая учебу интересной и успешной.
В 7 классе у наших детей появляется новый учебный предмет, который поначалу может показаться простым и не очень серьезным. Но это далеко не так. В былые годы наличие обязательного экзамена по геометрии с первых дней изучения новой дисциплины настраивало на серьёзный лад. Сейчас наличие задач по геометрии в ГИА и ЕГЭ по математике убедить учащихся в насущности и значимости предмета. Необходимость теоретических знаний понимается большинством учащихся при решении задач, доказательстве теорем, везде, где не обойтись без аргументированных объяснений. Задача учителя не только донести знания по предмету, но и заставить овладеть ими. Готовясь к зачётам дети вынуждены самостоятельно разбирать, заучивать учебный материал, а также консультироваться у учителя, друг у друга, доказывая друзьям теоремы и решая задачи на дополнительных занятиях и консультациях по математике. Этот процесс – объяснение товарищу – очень нравится ребятам, они при этом повышают свою самооценку, мотивацию к учебе, повышают качество собственных знаний. Учащиеся сначала побаиваются зачетов, но в процессе подготовки и при проведении понимают их необходимость, поэтому относятся более ответственно к данной технологии. Но как любое полезное для детей мероприятие, подготовка зачёта и экзамена, требует серьёзной и кропотливой работы со стороны взрослых, в данном случае – учителя математики. Надеюсь своей работой облегчить на начальном этапе труд педагога при подготовке к зачету по геометрии в 7 классе.