Вписанные углы РMN и KNM опираются на равные хорды. Следовательно, дуги, стягиваемые этим хордами, равны. Вписанные углы, опирающиеся на равные дуги (или на равные хорды), равны.
∠РMN=∠KNM
Проведем хорды МР и КN.
В треугольниках MPN и MKN вписанные ∠Р = ∠К (опираются на диаметр).⇒
Прямоугольные ∆ МРN=∆ MKN по острому углу и общей гипотенузе.
Отсюда следует равенство PNM=KMN
Эти углы - накрестлежащие при пересечении РN и MK секущей MN.
Если при пересечении двух прямых секущей накрестлежащие углы равны. эти прямые - параллельны. Доказано.
Вписанные углы РMN и KNM опираются на равные хорды. Следовательно, дуги, стягиваемые этим хордами, равны. Вписанные углы, опирающиеся на равные дуги (или на равные хорды), равны.
∠РMN=∠KNM
Проведем хорды МР и КN.
В треугольниках MPN и MKN вписанные ∠Р = ∠К (опираются на диаметр).⇒
Прямоугольные ∆ МРN=∆ MKN по острому углу и общей гипотенузе.
Отсюда следует равенство PNM=KMN
Эти углы - накрестлежащие при пересечении РN и MK секущей MN.
Если при пересечении двух прямых секущей накрестлежащие углы равны. эти прямые - параллельны. Доказано.
Объяснение:
а) Пусть СХ=х , тогда ХД=7-х.
Произведение отрезков одной хорды равно произведению отрезков другой хорды ⇒
СХ*ХД=АХ*ХВ,
х*(7-х)=2*6 , 7х-х²=12 ,
х²-7х+12=0, D=49-48=1>0 ,
По т. Виета х₁+ х₂=7
х₁* х₂=12 ⇒ х₁=4, х₂=3 .
Если СХ=4 , тогда ХД=7-4=3.
Если СХ=3 , тогда ХД=7-3=4.
б) ∪ АД=80°, ∪ СВ=48°.∠АХС=180°-∠АХД. Найдем угол ∠АХД по теореме : "Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами " ⇒
∠АХД=(48°+80°):2=64°.
∠АХС=180°-64°=116°.