з точки А до кола проведено дотичні АВ і АС, В і С - точки дотику. Чому дорівнює кут АСО? 2) прма АВ- дотична до кола з центром у точці О, С- точка дотику, АВ= 4 см. Чому = АС?
1) фотография. Попыталась как можно точнее написать.
2) Диагонали трапеции являются биссектрисами его углов, поэтому большая диагональ разделить угол в 60° на углы, равные 30° и 30° соответственно. Кроме того, диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Тогда большая диагональ разделмт меньшую на отрезки, равные 6 см и 6 см. Рассмотрим один из получившихся треугольников. Он прямоугольный и катет, лежащий против угла в 30°, равен 6 см. Тогда гипотенуза, которой является сторона трапеции, равна удвоенному катету, противолежащему углу в 30°, т.е. 2•6см = 12см. . Вторая диагонаот по теореме Пифагора равна: 2•(√12² - 6²) = 2√108 = 12√3/ответ: 12 см, 12√3.
Пусть угол меж этими сторонами fi S = 1/2*1*5*sin(fi) При fi = 0 площадь треугольника равна 0 Синус - функция возрастающая вплоть до Pi/2, но при этом значении у нас уже получится, что 5 - не самая длинная сторона, а катет, который короче гипотенузы. Поэтому самое большое значение площади треугольниrа будет при максимально возможном значении fi. А оно будет достигнуто в равностороннем треугольнике со сторонами 1,5,5 Высота этого треугольника h²+(1/2)²=5² h = √(99/4) = 3√11/2 S = 1/2·1·3√11/2 = 3√11/4 см² ≈ 2,487 см²
2) Диагонали трапеции являются биссектрисами его углов, поэтому большая диагональ разделить угол в 60° на углы, равные 30° и 30° соответственно. Кроме того, диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Тогда большая диагональ разделмт меньшую на отрезки, равные 6 см и 6 см.
Рассмотрим один из получившихся треугольников.
Он прямоугольный и катет, лежащий против угла в 30°, равен 6 см.
Тогда гипотенуза, которой является сторона трапеции, равна удвоенному катету, противолежащему углу в 30°, т.е. 2•6см = 12см.
. Вторая диагонаот по теореме Пифагора равна: 2•(√12² - 6²) = 2√108 = 12√3/ответ: 12 см, 12√3.
S = 1/2*1*5*sin(fi)
При fi = 0 площадь треугольника равна 0
Синус - функция возрастающая вплоть до Pi/2, но при этом значении у нас уже получится, что 5 - не самая длинная сторона, а катет, который короче гипотенузы.
Поэтому самое большое значение площади треугольниrа будет при максимально возможном значении fi. А оно будет достигнуто в равностороннем треугольнике со сторонами 1,5,5
Высота этого треугольника
h²+(1/2)²=5²
h = √(99/4) = 3√11/2
S = 1/2·1·3√11/2 = 3√11/4 см² ≈ 2,487 см²