ВД - медиана, она же биссектриса. Углы при вершине В равны. Треугольник ВМК равен треугольнику BNK по стороне ВК и двум прилежащим к ней углам. А в равных треугольниках против равных сторон лежат равные углы. Значит, углы BMK и BNK равны 110. А протв равных углов лежат равные стороны. Против угла BKM лежит сторона ВМ, а против угла BKN лежит сторона BN. В треугольнике MBN стороны ВМ и BN равны. Значит треугольник равнобедренный, а биссектриса равнобедренного треугольника из его вершины является одновременно высотой. Значит MN перпендикулярна ВД.
Ясно, что один из отрезков - тот, который имеет своим концом вершину прямого угла - равен радиусу вписанной окружности. Это сразу понятно, если провести радиусы в точки касания - у вершины прямого угла получится квадрат, образованный двумя радиусами и двумя отрезками катетов.
Поскольку два угла прямоугольнного треугольника ОСТРЫЕ, то есть из половинки меньше 45 градусов, то отношение радиуса вписанной окружности к отрезку стороны от вершины острого угла до точки касания МЕНЬШЕ, чем 1. Поэтому радиус вписанной окружности равен 7, а один из катетов равен 15. Точки касания делят гипотенузу на отрезки 8 и x, а второй катет - на отрезки 7 и х.
(8 + x)^2 = (7 + x)^2 + 15^2;
x = (15^2 + 7^2 - 8^2)/2 = 105;
поэтому стороны треугольника равны 15, 112, 113.
Само собой, радиус описанной окружности равен половине гипотенузы 113/2.
(интересная Пифагорова тройка 15, 112, 113, - она получается, если взять Пифагорову тройку 5,12,13, и приписать 1 слева :) забавно было бы найти все такие тройки, у которых можно отбросить - или, наоборот, приписать - сколько-то знаков слева, и получится новая тройка. Но эту задачку вряд ли решит школьник, даже если сдаст десять тысяч ЕГЭ. Её и профессор не всякий решит...)
ВД - медиана, она же биссектриса. Углы при вершине В равны. Треугольник ВМК равен треугольнику BNK по стороне ВК и двум прилежащим к ней углам. А в равных треугольниках против равных сторон лежат равные углы. Значит, углы BMK и BNK равны 110. А протв равных углов лежат равные стороны. Против угла BKM лежит сторона ВМ, а против угла BKN лежит сторона BN. В треугольнике MBN стороны ВМ и BN равны. Значит треугольник равнобедренный, а биссектриса равнобедренного треугольника из его вершины является одновременно высотой. Значит MN перпендикулярна ВД.
Ясно, что один из отрезков - тот, который имеет своим концом вершину прямого угла - равен радиусу вписанной окружности. Это сразу понятно, если провести радиусы в точки касания - у вершины прямого угла получится квадрат, образованный двумя радиусами и двумя отрезками катетов.
Поскольку два угла прямоугольнного треугольника ОСТРЫЕ, то есть из половинки меньше 45 градусов, то отношение радиуса вписанной окружности к отрезку стороны от вершины острого угла до точки касания МЕНЬШЕ, чем 1. Поэтому радиус вписанной окружности равен 7, а один из катетов равен 15. Точки касания делят гипотенузу на отрезки 8 и x, а второй катет - на отрезки 7 и х.
(8 + x)^2 = (7 + x)^2 + 15^2;
x = (15^2 + 7^2 - 8^2)/2 = 105;
поэтому стороны треугольника равны 15, 112, 113.
Само собой, радиус описанной окружности равен половине гипотенузы 113/2.
(интересная Пифагорова тройка 15, 112, 113, - она получается, если взять Пифагорову тройку 5,12,13, и приписать 1 слева :) забавно было бы найти все такие тройки, у которых можно отбросить - или, наоборот, приписать - сколько-то знаков слева, и получится новая тройка. Но эту задачку вряд ли решит школьник, даже если сдаст десять тысяч ЕГЭ. Её и профессор не всякий решит...)