З точки А, що лежить поза колом з центром у точці О, проведено дотичні АВ і АС ( В і С – точки дотику). ВАС=60°. Знайти довжину радіуса кола, якщо ОА=15см.
Дано: ABC - равнобедренный треугольник, АВ = ВС = 13. АС = 10. Найти: Решение: У равнобедренного треугольника боковые стороны и углы при основания равны. С вершины В проведём перпендыкулярно к стороне основание высоту BK. Высота BK делит основание АС пополам, следовательно AK = CK = AC/2=10/2 = 5. С прямоугольного треугольника АВК (∠АКВ = 90°): По т. Пифагора определим высоту BК
Косинус угла это отношение прилежащего катета к гипотенузе, тоесть:
Синус угла - это отношение противолежащего катета к гипотенузе, тоесть:
Тангенс угла - это отношение противолежащего катета к прилежащему катету
Контангенс угла это отношение прилежащего катета к противолежащему катету
Пусть в треугольнике ABC проведены высота CH и медиана CM, при этом углы ACH, HCM, MCB равны (см. рисунок). В треугольнике ACM высота CH является также биссектрисой. Тогда треугольник равнобедренный с основанием AM. Обозначим сторону AB за 4x, тогда AM=MB=2x. Так как ACM равнобедренный, то CH также является медианой, тогда AH=HM=x.
Теперь рассмотрим прямоугольный треугольник BCH. Биссектриса CM делит его сторону BH вотношении 1:2. Тогда стороны CH и CB тоже относятся как 1:2 (MH/MB=CH/CB). То есть CH/BC=1/2. Если катет прямоугольного треугольника в 2 раза меньше гипотенузы, то угол, лежащий против этого катета, равен 30 градусам. Тогда угол HBC равен 30 градусам, а угол HCB равен 60 градусам. Если 2/3 угла C исходного треугольника равны 60 градусам, то угол C равен 90 градусам. Тогда треугольник прямоугольный, что и требовалось доказать.
Найти:
Решение:
У равнобедренного треугольника боковые стороны и углы при основания равны. С вершины В проведём перпендыкулярно к стороне основание высоту BK. Высота BK делит основание АС пополам, следовательно AK = CK = AC/2=10/2 = 5.
С прямоугольного треугольника АВК (∠АКВ = 90°):
По т. Пифагора определим высоту BК
Косинус угла это отношение прилежащего катета к гипотенузе, тоесть:
Синус угла - это отношение противолежащего катета к гипотенузе, тоесть:
Тангенс угла - это отношение противолежащего катета к прилежащему катету
Контангенс угла это отношение прилежащего катета к противолежащему катету
Теперь рассмотрим прямоугольный треугольник BCH. Биссектриса CM делит его сторону BH вотношении 1:2. Тогда стороны CH и CB тоже относятся как 1:2 (MH/MB=CH/CB). То есть CH/BC=1/2. Если катет прямоугольного треугольника в 2 раза меньше гипотенузы, то угол, лежащий против этого катета, равен 30 градусам. Тогда угол HBC равен 30 градусам, а угол HCB равен 60 градусам. Если 2/3 угла C исходного треугольника равны 60 градусам, то угол C равен 90 градусам. Тогда треугольник прямоугольный, что и требовалось доказать.