Сумма противоположных углов вписанной трапеции составляет 180°, поэтому:
1) Если ∠А=81°, то ∠С=180-81=99°;
2) Если ∠А=47°, то ∠С=180-47=133°;
Сумма углов трапеции, прилегающих к боковой стороне, составляет 180°, поэтому
3) Если ∠А=46°, то ∠В=180-46=134°;
4) Если ∠А=54°, то ∠В=180-54=126°
У описанной трапеции сумма оснований равна сумме боковых сторон, поэтому AD+ВС=АВ+CD
5) 14+22=13+AD; AD=23 см.
6) 10+12=6+AD; AD=16 см
7) 13+11=4+AD; AD=20 см
Высота вписанной трапеции равна диаметру окружности, поэтому:
8) h=26*2=52 см
9) h=28*2=56 см
10) h=44*2=88 cм
Объяснение:
1) Т. к. AB = BC, то треуг. ABC - р/б.
Т. к. треуг. ABC - р/б, то угол BCA = углу BAC = 50°
угол ABC = 180° - ∠BAC - ∠BCA = 180° - 50° - 50° = 80°
Т. к. ΔABC - р/б, то BM - биссектриса.
Т. к. BM - биссектриса, то ∠CBM = ∠ABC / 2 = 80° / 2 = 40°
ответ: 40°
3) ∠BCA = 180° - ∠BCD = 180° - 125° = 55°
Т. к. AB = BC, то ΔABC - р/б
Т. к. ΔABC - р/б, то ∠BAC = ∠BCA = 55°
∠ABC = 180° - ∠BAC - ∠BCA = 180° - 55° - 55° = 70°
ответ: 55°; 70°; 55°
4) ∠ABC = 180° - ∠DBC = 180° - 120° = 60°
∠ACB = 180° - ∠ECB = 180° - 110° = 70°
∠BAC = 180° - ∠ABC - ∠ACB = 180° - 60° - 70° = 50°
ответ: 50°; 60°; 70°
5) ∠BAC = ∠1 = 40°, как смежные
∠BCA = 180° - ∠2 = 180° - 85° = 95°
∠ABC = 180° - ∠BAC - ∠BCA = 180° - 40° - 95° = 45°
ответ: 40°; 45°; 95°
Сумма противоположных углов вписанной трапеции составляет 180°, поэтому:
1) Если ∠А=81°, то ∠С=180-81=99°;
2) Если ∠А=47°, то ∠С=180-47=133°;
Сумма углов трапеции, прилегающих к боковой стороне, составляет 180°, поэтому
3) Если ∠А=46°, то ∠В=180-46=134°;
4) Если ∠А=54°, то ∠В=180-54=126°
У описанной трапеции сумма оснований равна сумме боковых сторон, поэтому AD+ВС=АВ+CD
5) 14+22=13+AD; AD=23 см.
6) 10+12=6+AD; AD=16 см
7) 13+11=4+AD; AD=20 см
Высота вписанной трапеции равна диаметру окружности, поэтому:
8) h=26*2=52 см
9) h=28*2=56 см
10) h=44*2=88 cм
Объяснение:
1) Т. к. AB = BC, то треуг. ABC - р/б.
Т. к. треуг. ABC - р/б, то угол BCA = углу BAC = 50°
угол ABC = 180° - ∠BAC - ∠BCA = 180° - 50° - 50° = 80°
Т. к. ΔABC - р/б, то BM - биссектриса.
Т. к. BM - биссектриса, то ∠CBM = ∠ABC / 2 = 80° / 2 = 40°
ответ: 40°
3) ∠BCA = 180° - ∠BCD = 180° - 125° = 55°
Т. к. AB = BC, то ΔABC - р/б
Т. к. ΔABC - р/б, то ∠BAC = ∠BCA = 55°
∠ABC = 180° - ∠BAC - ∠BCA = 180° - 55° - 55° = 70°
ответ: 55°; 70°; 55°
4) ∠ABC = 180° - ∠DBC = 180° - 120° = 60°
∠ACB = 180° - ∠ECB = 180° - 110° = 70°
∠BAC = 180° - ∠ABC - ∠ACB = 180° - 60° - 70° = 50°
ответ: 50°; 60°; 70°
5) ∠BAC = ∠1 = 40°, как смежные
∠BCA = 180° - ∠2 = 180° - 85° = 95°
∠ABC = 180° - ∠BAC - ∠BCA = 180° - 40° - 95° = 45°
ответ: 40°; 45°; 95°