Нужно найти углы ВОА и ВОС. Находим внутренний угол В треугольника АВС: <B=180-78=102° Это наибольший угол треугольника (на углы А и С приходится всего 180-102=78°). Против большего угла лежит большая сторона треугольника. Значит, искомые углы ВОА и ВОС. Поскольку ВО - биссектриса, то угол ОВA равен: <OBA= 102:2=51° Зная внешний угол при вершине А, находим внутренний угол треугольника: <A=180-150=30° Зная, что сумма углов треугольника равна 180°, находим угол ВОА в треугольнике АВО: <BOA=180-<OBA-<A=180-51-30=99° <BOC=<AOC-<BOA=180-99=81°
В квадрате АВСD точка К - середина стороны ВС, точка М - серидина стороны АВ. Докажите, что прямые АК и МД перпендикулярны, а треугольники АЕМ (Е - точка пересечения прямых АК и МД) и АВК подобны. Треугольники СDN и АМD равны по двум сторонам и прямому углу между ними. Угол CND=углу АМD, угол АDМ=NCD Сумма углов ADM и АМD равны 90 градусов. Рассмотрим треугольник DNO. Угол OND=CND, угол АDМ=NCD. И в сумме они дают 90 градусов. Отсюда угол МOD = 90 градусов, т.к. сумма углов треугольника равна 180 градусов. Треугольники DNO и АMD подобны по трем углам, хотя для прямоугольных треугольников достаточно одного равного острого угла. Найдем коэффициент подобия к=AD/OD=AM/ON=MD/ND т.к. по условию AD=2AM и АМ=АN=ND, то к=2AM/OD=AM/ON=MD/AM 2AM/OD=AM/ON, значит OD=2ON Площадь Δ DNO SΔ=36=OD*ON/2=2ON*ON/2=ON². ON=6 Тогда OD=2*6=12, а ND=√ON²+OD²=√36+144=√180=6√5 Сторона квадрата равна AB=BC=CD=AD=2*6√5=12√5 Площадь квадрата Sк=(12√5)²=720 Площадь AMCD= площадь квадрата Sк - площадь S ΔСВМ площадь S ΔСВМ=1/2*ВС*ВМ=1/2*12√5*6√5=180 Площадь AMCD=720-180=540
Находим внутренний угол В треугольника АВС:
<B=180-78=102°
Это наибольший угол треугольника (на углы А и С приходится всего 180-102=78°). Против большего угла лежит большая сторона треугольника. Значит, искомые углы ВОА и ВОС.
Поскольку ВО - биссектриса, то угол ОВA равен:
<OBA= 102:2=51°
Зная внешний угол при вершине А, находим внутренний угол треугольника:
<A=180-150=30°
Зная, что сумма углов треугольника равна 180°, находим угол ВОА в треугольнике АВО:
<BOA=180-<OBA-<A=180-51-30=99°
<BOC=<AOC-<BOA=180-99=81°
Треугольники СDN и АМD равны по двум сторонам и прямому углу между ними.
Угол CND=углу АМD, угол АDМ=NCD
Сумма углов ADM и АМD равны 90 градусов.
Рассмотрим треугольник DNO.
Угол OND=CND,
угол АDМ=NCD. И в сумме они дают 90 градусов.
Отсюда угол МOD = 90 градусов, т.к. сумма углов треугольника равна 180 градусов.
Треугольники DNO и АMD подобны по трем углам, хотя для прямоугольных треугольников достаточно одного равного острого угла.
Найдем коэффициент подобия к=AD/OD=AM/ON=MD/ND
т.к. по условию AD=2AM и АМ=АN=ND, то к=2AM/OD=AM/ON=MD/AM
2AM/OD=AM/ON, значит OD=2ON
Площадь Δ DNO SΔ=36=OD*ON/2=2ON*ON/2=ON². ON=6
Тогда OD=2*6=12, а ND=√ON²+OD²=√36+144=√180=6√5
Сторона квадрата равна AB=BC=CD=AD=2*6√5=12√5
Площадь квадрата Sк=(12√5)²=720
Площадь AMCD= площадь квадрата Sк - площадь S ΔСВМ
площадь S ΔСВМ=1/2*ВС*ВМ=1/2*12√5*6√5=180
Площадь AMCD=720-180=540