З точки до площини опущено перпендикуляр та похилу. Довжина проекції похилої дорівнює 6 см. Знайдіть довжини перпендикуляра та похилої, якщо кут між перпендикуляром та похилою дорівнює 60⁰.
Треугольник АВС. В - вершина. АС - основание.Высота. Нужно из точки А провести дугу радиусом АВ, из точки С дугу радиусом ВС. Получится точка пересечения за пределами треугольника. Через эту точку из точки В чертим линию до основания.Биссектриса. Чертим дугу с центром В так, чтобы дуга пересекла стороны АВ и ВС, на сторонах получаем две промежуточные точки, из которых проводим две дуги с равным радиусом, который несколько больше половины основания, соединяем точку пересечения с В.Медиана. Из точек А и С проводим две дуги радиусом несколько больше половины основания, две полученные точки соединяем, линия пересекает основание в середине. Среднюю точку соединяем с точкой В.Такие действия можно провести с любым углом и стороной.
Первое, что нетрудно доказывается, --- треугольник АВК прямоугольный. Площадь прямоугольного треугольника = половине произведения катетов))) гипотенуза АВ = 4 --это очевидно из получившейся трапеции... а чтобы найти катеты не хватает известных углов))) на рисунке есть два равных треугольника: треугольник АВК равен половине равнобедренного треугольника с боковыми сторонами 4 ---по гипотенузе и острому углу))) из этого очевидно: АК = 2*КВ по т.Пифагора 4х² + х² = 16 ---> 5x² = 16 S(ABK) = (1/2)*x*2x = x² = 16/5 = 3.2
Площадь прямоугольного треугольника = половине произведения катетов)))
гипотенуза АВ = 4 --это очевидно из получившейся трапеции...
а чтобы найти катеты не хватает известных углов)))
на рисунке есть два равных треугольника:
треугольник АВК равен половине равнобедренного треугольника с боковыми сторонами 4 ---по гипотенузе и острому углу)))
из этого очевидно: АК = 2*КВ
по т.Пифагора
4х² + х² = 16 ---> 5x² = 16
S(ABK) = (1/2)*x*2x = x² = 16/5 = 3.2