Если графически задан образец отрезка (если задана сторона-см. условие), то берем радиус окружности, равный отрезку, ставим иглу циркуля в т. А и делаем отметку на прямой р заданной длины. Это т. В.
Построим угол А будущего треугольника АВС прямым.
Для этого из т. А в обе стороны на прямой р делаем отметины циркулем произвольного радиуса, отмечаем точки А1 и А2. А1 и А2 равноудалены от т. А.
Теперь чертим окружность с центром в т. А1, радиусом чуть бОльшим, чем АА1. Не изменяя радиус, чертим окружность с центром в т. А2.
Эти окружности пересекутся в 2 точках, через них нужно провести прямую с.
По построению с⊥р.
Далее построим угол 60°в т. В.
Для этого чертим произвольную окружность с центром в т. В.
Выберем точку (одну из двух) пересечения этой окружности с прямой р, расположенную ближе к т. А. Обозначим т. В1.
Не меняя радиуса, построим окружность с центром в т. В1
Через одну из точек пересечения этих окружностей и т. В проведем прямую а.
Пересечение прямых а и с дадут т. С-искомую вершину треугольника АВС.
По первому признаку подобия треугольников имеем, что данные равнобедр.треуг. подобны. Коэффициент их подобия равен как отношению соотв.сторон, так и отношению периметров. Найдем боковые стороны первого треугольника. Высота к основанию является также медианой, значит по теореме Пифагора боковая сторона равна кореньиз(64+36)=10. Периметр первого треугольника равен 10+10+16=36. Коэффициент подобия k=54/36=3/2=1,5. Значит боковые стороны второго равнобедр.треугольника равны 10*1,5=15 см, а основание равно 16*1,5=24 см.
Чертим прямую р.
На прямой р ставим произвольно т А.
Если графически задан образец отрезка (если задана сторона-см. условие), то берем радиус окружности, равный отрезку, ставим иглу циркуля в т. А и делаем отметку на прямой р заданной длины. Это т. В.
Построим угол А будущего треугольника АВС прямым.
Для этого из т. А в обе стороны на прямой р делаем отметины циркулем произвольного радиуса, отмечаем точки А1 и А2. А1 и А2 равноудалены от т. А.
Теперь чертим окружность с центром в т. А1, радиусом чуть бОльшим, чем АА1. Не изменяя радиус, чертим окружность с центром в т. А2.
Эти окружности пересекутся в 2 точках, через них нужно провести прямую с.
По построению с⊥р.
Далее построим угол 60°в т. В.
Для этого чертим произвольную окружность с центром в т. В.
Выберем точку (одну из двух) пересечения этой окружности с прямой р, расположенную ближе к т. А. Обозначим т. В1.
Не меняя радиуса, построим окружность с центром в т. В1
Через одну из точек пересечения этих окружностей и т. В проведем прямую а.
Пересечение прямых а и с дадут т. С-искомую вершину треугольника АВС.