Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.
1) хорда ba делит окружность на две дуги,одна из которых равна 126,диаметр ab делит окружность на две дуги,одна из которых равна 180,а другая x,наглядно видно,что получается три дуги - одна в 126 градусов,другая - в 180,третья - в x.сумма дуг окружностей равна 360 градусам,т.е 360-180-126=x=54,дуга ac равна 54,а вписанный угол abc равен,как известно,половине дуги,на которую он опирается,т.е угол abc=27. 2) хорда ab делит окружность на две дуги,одна равна 110,а другая - 250,вот эта большая дуга,равная 250,делится точкой c на две дуги - 12x и 13x (всегда можно записать пропорциональность в таком виде,например, в отношении 1/2 - это x и 2x) , т.е 25x=250,x=10,вписанный угол cab опирается на "дугу 13x",т.е на дугу,равную 130 градусам,т.е он равен 65 градусам.